
AProVE (KoAT + LoAT)
Automatic Termination Analysis of C Programs
Nils Lommen, Florian Frohn, and Jürgen Giesl

Overview
• AProVE (KoAT + LoAT) [1] is a framework to analyze termination of C Programs
• Programs are transformed into Integer Transition Systems (ITSs)
• ITSs are analyzed by our tools KoAT [2] and LoAT [3]

C
Program

LLVM
Program

Symbolic
Execution

Graph

ITS

(Non-)
Termination
by AProVE

YES

Path
in C

Program

Path
in LLVM
Program

Concrete
Execution

Path in SEG

NO + Proof

KoAT

LoAT

Figure 1: AProVE (KoAT + LoAT) for (Dis)proving Termination

Exemplary C Program

Does the following program terminate?

1 exte rn i n t _nondet (vo id) ;
2

3 i n t main () {
4 i n t x = _nondet () ;
5 i n t y = _nondet () ;
6

7 whi l e (x < y) {
8 x = 3∗x ;
9 y = 2∗y ;

10 }
11 r e tu rn 0 ;
12 }

LLVM Program
• C program is compiled into LLVM code using

Clang.
• LLVM fragment of the loop body:

1 %10 = load %1 # load x
2 %11 = mul 3 %10 # mul t i p l y x by 3
3 s t o r e %11, %1 # st o r e x
4 %12 = load %2 # load y
5 %13 = mul 2 %13 # mul t i p l y y by 2
6 s t o r e %13, %2 # st o r e y
7 br %6 # jump to loop guard

Symbolic Execution Graph (SEG) & ITS
SEG represents all possible program runs, augmented with invariants:
• Its nodes are abstract states that represent sets of actual program states
• SEG handles the heap, pointer arithmetic, and recursive data structures
• LLVM code is transformed automatically into an SEG

ITSs are a simple language for integer programs:

• Turing-complete formalism with
only integer variables over Z

• SEG is transformed into ITS
`0 `1

t0
t1 : ϕ = (x < y)
η(x) = 3 · x
η(y) = 2 · y

KoAT (Termination & Upper Time Bounds)
• Automated complexity and termination analysis of ITSs
• Alternating modular inference of runtime and size bounds
• How often can a transition be executed?
• Multiphase Linear Ranking Functions

↪→ Use SMT-solver Z3 to infer well-founded relation
• TWN-Loops

↪→ Reduce termination problem to SMT problem
Completeness for the class of so-called TWN-loops

• How large are the variables?
• Compute bounds for each change of a variable

↪→ Over-approximate the number of changes by
runtime bounds

• Use runtime bounds and closed forms of loops

LoAT (Non-Termination and more)
Features

• non-termination
• lower time bounds
• safety / unsafety

Techniques

ADCL DFS + acceleration
ABMC BFS + acceleration

TRL BFS + recurrence analysis

Non-term. via Acceleration Driven Clause Learning

• Depth-first exploration of state space
• Applies acceleration︸ ︷︷ ︸

under-approximation of the loop’s transitive closure

when a loop is encountered

• Non-term. proofs as “by-product” of acceleration
• Exploits redundancy to cut off infinite branches

References
[1] Nils Lommen and Jürgen Giesl. AProVE (KoAT + LoAT) Website: https://koat.verify.rwth-aachen.de/svcomp25.
[2] Nils Lommen, Éléanore Meyer, and Jürgen Giesl. KoAT Website: https://koat.verify.rwth-aachen.de/.
[3] Florian Frohn and Jürgen Giesl. LoAT Website: https://loat-developers.github.io/LoAT/.

