
Targeting Completeness: Using Closed Forms for Size
Bounds of Integer Programs
14th International Symposium on Frontiers of Combining Systems

Nils Lommen and Jürgen Giesl

1 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Motivation

Goal: Infer (upper) size and time bounds for “real-world” programs

while (x1 > 0) do[
x1
x2

]
←

[
x1 − 1
x2 + x21

]
end

▶ How large are the variables?
▶ How often do we execute the second loop?

• Maximal “size” of x2 times
• Existing tools usually fail with non-linear
arithmetic.

• Can compute non-linear size and time bounds for
prs loops.

• Approach is complete for a large class of
programs.

▶ Size bound computations are implemented in the automatic complexity
analysis tool KoAT

2 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Motivation

Goal: Infer (upper) size and time bounds for “real-world” programs

while (x1 > 0) do[
x1
x2

]
←

[
x1 − 1
x2 + x21

]
end

▶ How large are the variables?

▶ How often do we execute the second loop?

• Maximal “size” of x2 times
• Existing tools usually fail with non-linear
arithmetic.

• Can compute non-linear size and time bounds for
prs loops.

• Approach is complete for a large class of
programs.

▶ Size bound computations are implemented in the automatic complexity
analysis tool KoAT

2 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Motivation

Goal: Infer (upper) size and time bounds for “real-world” programs

while (x1 > 0) do[
x1
x2

]
←

[
x1 − 1
x2 + x21

]
end
while (x2 > 0) do[

x2
]
←

[
x2 − 1

]
end

▶ How large are the variables?

▶ How often do we execute the second loop?

• Maximal “size” of x2 times
• Existing tools usually fail with non-linear
arithmetic.

• Can compute non-linear size and time bounds for
prs loops.

• Approach is complete for a large class of
programs.

▶ Size bound computations are implemented in the automatic complexity
analysis tool KoAT

2 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Motivation

Goal: Infer (upper) size and time bounds for “real-world” programs

while (x1 > 0) do[
x1
x2

]
←

[
x1 − 1
x2 + x21

]
end
while (x2 > 0) do[

x2
]
←

[
x2 − 1

]
end

▶ How large are the variables?
▶ How often do we execute the second loop?

• Maximal “size” of x2 times
• Existing tools usually fail with non-linear
arithmetic.

• Can compute non-linear size and time bounds for
prs loops.

• Approach is complete for a large class of
programs.

▶ Size bound computations are implemented in the automatic complexity
analysis tool KoAT

2 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Motivation

Goal: Infer (upper) size and time bounds for “real-world” programs

while (x1 > 0) do[
x1
x2

]
←

[
x1 − 1
x2 + x21

]
end
while (x2 > 0) do[

x2
]
←

[
x2 − 1

]
end

▶ How large are the variables?
▶ How often do we execute the second loop?

• Maximal “size” of x2 times

• Existing tools usually fail with non-linear
arithmetic.

• Can compute non-linear size and time bounds for
prs loops.

• Approach is complete for a large class of
programs.

▶ Size bound computations are implemented in the automatic complexity
analysis tool KoAT

2 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Motivation

Goal: Infer (upper) size and time bounds for “real-world” programs

while (x1 > 0) do[
x1
x2

]
←

[
x1 − 1
x2 + x21

]
end
while (x2 > 0) do[

x2
]
←

[
x2 − 1

]
end

▶ How large are the variables?
▶ How often do we execute the second loop?

• Maximal “size” of x2 times
• Existing tools usually fail with non-linear
arithmetic.

• Can compute non-linear size and time bounds for
prs loops.

• Approach is complete for a large class of
programs.

▶ Size bound computations are implemented in the automatic complexity
analysis tool KoAT

2 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Motivation

Goal: Infer (upper) size and time bounds for “real-world” programs

while (x1 > 0) do[
x1
x2

]
←

[
x1 − 1
x2 + x21

]
end
while (x2 > 0) do[

x2
]
←

[
x2 − 1

]
end

▶ How large are the variables?
▶ How often do we execute the second loop?

• Maximal “size” of x2 times
• Existing tools usually fail with non-linear
arithmetic.

• Can compute non-linear size and time bounds for
prs loops.

• Approach is complete for a large class of
programs.

▶ Size bound computations are implemented in the automatic complexity
analysis tool KoAT

2 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Motivation

Goal: Infer (upper) size and time bounds for “real-world” programs

while (x1 > 0) do[
x1
x2

]
←

[
x1 − 1
x2 + x21

]
end
while (x2 > 0) do[

x2
]
←

[
x2 − 1

]
end

▶ How large are the variables?
▶ How often do we execute the second loop?

• Maximal “size” of x2 times
• Existing tools usually fail with non-linear
arithmetic.

• Can compute non-linear size and time bounds for
prs loops.

• Approach is complete for a large class of
programs.

▶ Size bound computations are implemented in the automatic complexity
analysis tool KoAT

2 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Motivation

Goal: Infer (upper) size and time bounds for “real-world” programs

while (x1 > 0) do[
x1
x2

]
←

[
x1 − 1
x2 + x21

]
end
while (x2 > 0) do[

x2
]
←

[
x2 − 1

]
end

▶ How large are the variables?
▶ How often do we execute the second loop?

• Maximal “size” of x2 times
• Existing tools usually fail with non-linear
arithmetic.

• Can compute non-linear size and time bounds for
prs loops.

• Approach is complete for a large class of
programs.

▶ Size bound computations are implemented in the automatic complexity
analysis tool KoAT

2 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

loops

size bounds

time bounds
completeness completeness

size bounds time bounds
completeness completeness

Lifting

3 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

loops

size bounds time bounds

completeness completeness

size bounds time bounds
completeness completeness

Lifting

3 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

loops

size bounds time bounds
completeness

completeness

size bounds time bounds
completeness completeness

Lifting

3 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

loops

size bounds time bounds
completeness completeness

size bounds time bounds
completeness completeness

Lifting

3 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

prs loops

size bounds time bounds
completeness completeness

size bounds time bounds
completeness completeness

Lifting

3 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

prs loops

size bounds time bounds
completeness completeness

integer programs

size bounds time bounds
completeness completeness

Lifting

3 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

prs loops

size bounds time bounds
completeness completeness

integer programs

size bounds

time bounds
completeness completeness

Lifting

3 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

prs loops

size bounds time bounds
completeness completeness

integer programs

size bounds

time bounds
completeness completeness

Lifting

3 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

prs loops

size bounds time bounds
completeness completeness

integer programs

size bounds time bounds

completeness completeness

Lifting

3 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

prs loops

size bounds time bounds
completeness completeness

integer programs

size bounds time bounds

completeness completeness

Lifting

3 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

prs loops

size bounds time bounds
completeness completeness

integer programs

size bounds time bounds
completeness completeness

Lifting

3 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

prs loops

size bounds time bounds
completeness completeness

simple integer programs

size bounds time bounds
completeness completeness

Lifting

3 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

prs loops

time bounds

completeness

completeness

integer programs

size bounds time bounds

completeness completeness

Lifting

3 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

prs loops

size bounds time bounds
completeness completeness

simple integer programs

size bounds time bounds
completeness completeness

Lifting

3 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

prs loops

size boundssize bounds time bounds
completeness completeness

simple integer programs

size bounds time bounds
completeness completeness

Lifting

3 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x1 and x2

while (x1 > 0) do[
x1
x2

]
←

[
x1 − 1
x2 + x21

]
end

▶ Compute closed form for x1.
▶ Over-approximate closed form to non-negative,
weakly monotonic increasing expression.

▶ Replace n by an over-approximation of the
runtime.

▶ Closed form: clnx1 = x1 − n

▶ Over-approximation: x1 + n

▶ Size bound:

x1 + x1

= 2 · x1

4 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x1 and x2

while (x1 > 0) do[
x1
x2

]
←

[
x1 − 1
x2 + x21

]
end

▶ Compute closed form for x1.

▶ Over-approximate closed form to non-negative,
weakly monotonic increasing expression.

▶ Replace n by an over-approximation of the
runtime.

▶ Closed form: clnx1 = x1 − n

▶ Over-approximation: x1 + n

▶ Size bound:

x1 + x1

= 2 · x1

4 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x1 and x2

while (x1 > 0) do[
x1
x2

]
←

[
x1 − 1
x2 + x21

]
end

▶ Compute closed form for x1.

▶ Over-approximate closed form to non-negative,
weakly monotonic increasing expression.

▶ Replace n by an over-approximation of the
runtime.

▶ Closed form: clnx1 = x1 − n

▶ Over-approximation: x1 + n

▶ Size bound:

x1 + x1

= 2 · x1

4 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x1 and x2

while (x1 > 0) do[
x1
x2

]
←

[
x1 − 1
x2 + x21

]
end

▶ Compute closed form for x1.
▶ Over-approximate closed form to non-negative,
weakly monotonic increasing expression.

▶ Replace n by an over-approximation of the
runtime.

▶ Closed form: clnx1 = x1 − n

▶ Over-approximation: x1 + n

▶ Size bound:

x1 + x1

= 2 · x1

4 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x1 and x2

while (x1 > 0) do[
x1
x2

]
←

[
x1 − 1
x2 + x21

]
end

▶ Compute closed form for x1.
▶ Over-approximate closed form to non-negative,
weakly monotonic increasing expression.

▶ Replace n by an over-approximation of the
runtime.

▶ Closed form: clnx1 = x1 − n

▶ Over-approximation: x1 + n

▶ Size bound:

x1 + x1

= 2 · x1

4 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x1 and x2

while (x1 > 0) do[
x1
x2

]
←

[
x1 − 1
x2 + x21

]
end

▶ Compute closed form for x1.
▶ Over-approximate closed form to non-negative,
weakly monotonic increasing expression.

▶ Replace n by an over-approximation of the
runtime.

▶ Closed form: clnx1 = x1 − n

▶ Over-approximation: x1 + n

▶ Size bound:

x1 + x1

= 2 · x1

4 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x1 and x2

while (x1 > 0) do[
x1
x2

]
←

[
x1 − 1
x2 + x21

]
end

▶ Compute closed form for x1.
▶ Over-approximate closed form to non-negative,
weakly monotonic increasing expression.

▶ Replace n by an over-approximation of the
runtime.

▶ Closed form: clnx1 = x1 − n

▶ Over-approximation: x1 + n

▶ Size bound: x1 + x1

= 2 · x1

4 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x1 and x2

while (x1 > 0) do[
x1
x2

]
←

[
x1 − 1
x2 + x21

]
end

▶ Compute closed form for x1.
▶ Over-approximate closed form to non-negative,
weakly monotonic increasing expression.

▶ Replace n by an over-approximation of the
runtime.

▶ Closed form: clnx1 = x1 − n

▶ Over-approximation: x1 + n

▶ Size bound: x1 + x1 = 2 · x1

4 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x1 and x2

while (x1 > 0) do[
x1
x2

]
←

[
x1 − 1
x2 + x21

]
end

▶ Compute closed form for x1.
▶ Over-approximate closed form to non-negative,
weakly monotonic increasing expression.

▶ Replace n by an over-approximation of the
runtime.

▶ Closed form: clnx1 = x1 − n

▶ Over-approximation: x1 + n

▶ Size bound: x1 + x1 = 2 · x1

⇒ for an initial configuration x1 = −5:

2 · | − 5| = 10

4 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x1 and x2

while (x1 > 0) do[
x1
x2

]
←

[
x1 − 1
x2 + x21

]
end

▶ Compute closed form for x1.
▶ Over-approximate closed form to non-negative,
weakly monotonic increasing expression.

▶ Replace n by an over-approximation of the
runtime.

▶ Closed form: clnx1 = x1 − n

▶ Over-approximation: x1 + n

▶ Size bound: x1 + x1 = 2 · x1

⇒ for an initial configuration x1 = −5: 2 · | − 5| = 10

4 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x1 and x2

while (x1 > 0) do[
x1
x2

]
←

[
x1 − 1
x2 + x21

]
end

▶ Compute closed form for x2.
▶ Over-approximate closed form to non-negative,
weakly monotonic increasing expression.

▶ Replace n by an over-approximation of the
runtime.

▶ Closed form: clnx2 = x2 + n · (16 + x1 + x21 − x1 · n − n
2 +

n2

3)

▶ Over-approximation: x2 + n · (16 + x1 + x21 + x1 · n + n
2 +

n2

3)

▶ Size bound: x2 + x1 · (16 + x1 + x21 + x1 · x1 + x1
2 + x1

2

3)

4 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x1 and x2

while (x1 > 0) do[
x1
x2

]
←

[
x1 − 1
x2 + x21

]
end

▶ Compute closed form for x2.
▶ Over-approximate closed form to non-negative,
weakly monotonic increasing expression.

▶ Replace n by an over-approximation of the
runtime.

▶ Closed form: clnx2 = x2 + n · (16 + x1 + x21 − x1 · n − n
2 +

n2

3)

▶ Over-approximation: x2 + n · (16 + x1 + x21 + x1 · n + n
2 +

n2

3)

▶ Size bound: x2 + x1 · (16 + x1 + x21 + x1 · x1 + x1
2 + x1

2

3)

4 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x1 and x2

while (x1 > 0) do[
x1
x2

]
←

[
x1 − 1
x2 + x21

]
end

▶ Compute closed form for x2.
▶ Over-approximate closed form to non-negative,
weakly monotonic increasing expression.

▶ Replace n by an over-approximation of the
runtime.

▶ Closed form: clnx2 = x2 + n · (16 + x1 + x21 − x1 · n − n
2 +

n2

3)

▶ Over-approximation: x2 + n · (16 + x1 + x21 + x1 · n + n
2 +

n2

3)

▶ Size bound: x2 + x1 · (16 + x1 + x21 + x1 · x1 + x1
2 + x1

2

3)

4 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x1 and x2

while (x1 > 0) do[
x1
x2

]
←

[
x1 − 1
x2 + x21

]
end

▶ Compute closed form for x2.
▶ Over-approximate closed form to non-negative,
weakly monotonic increasing expression.

▶ Replace n by an over-approximation of the
runtime.

▶ Closed form: clnx2 = x2 + n · (16 + x1 + x21 − x1 · n − n
2 +

n2

3)

▶ Over-approximation: x2 + n · (16 + x1 + x21 + x1 · n + n
2 +

n2

3)

▶ Size bound: x2 + x1 · (16 + x1 + x21 + x1 · x1 + x1
2 + x1

2

3)

4 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

prs loop

size bounds time bounds
completeness completeness

simple integer programs

size bounds time bounds
completeness completeness

Lifting

5 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

prs loops

size bounds time bounds
completeness completeness

simple integer programs

size bounds time bounds
completeness completeness

Lifting

5 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Periodic Rational Solvable Loops

while (τ) do

S1...
Sd

←
A1 0 0

0
. . . 0

0 0 Ad

S1...
Sd

+
p1...
pd

end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ Partition variables into blocks:
S1 ⊎ · · · ⊎ Sd

▶ Ai ∈ Z|Si|×|Si| integer matrix

with
periodic rational eigenvalues

▶ pi ∈ Z[
∪

j<i Sj]
|Si| polynomials

▶ Variable value depends at most linearly on its previous value.

• Prevent super-exponential growth: x← x2 (so the value is x(2
n))

▶ Non-linear dependencies only of variables from blocks with lower indices
▶ Solve recurrence to obtain closed form.
▶ Periodic rational: there exists n ∈ N s.t. λn ∈ Q for λ ∈ Q

√
3 and i as (

√
3)2 ∈ Q and i2 ∈ Q ✓ 2 + 3i 7

6 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Periodic Rational Solvable Loops

while (τ) doS1...
Sd

←

A1 0 0

0
. . . 0

0 0 Ad

S1...
Sd

+

p1...
pd

end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ Partition variables into blocks:
S1 ⊎ · · · ⊎ Sd

▶ Ai ∈ Z|Si|×|Si| integer matrix

with
periodic rational eigenvalues

▶ pi ∈ Z[
∪

j<i Sj]
|Si| polynomials

▶ Variable value depends at most linearly on its previous value.

• Prevent super-exponential growth: x← x2 (so the value is x(2
n))

▶ Non-linear dependencies only of variables from blocks with lower indices
▶ Solve recurrence to obtain closed form.
▶ Periodic rational: there exists n ∈ N s.t. λn ∈ Q for λ ∈ Q

√
3 and i as (

√
3)2 ∈ Q and i2 ∈ Q ✓ 2 + 3i 7

6 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Periodic Rational Solvable Loops

while (τ) doS1...
Sd

←
A1 0 0

0
. . . 0

0 0 Ad

S1...
Sd

+

p1...
pd

end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ Partition variables into blocks:
S1 ⊎ · · · ⊎ Sd

▶ Ai ∈ Z|Si|×|Si| integer matrix

with
periodic rational eigenvalues

▶ pi ∈ Z[
∪

j<i Sj]
|Si| polynomials

▶ Variable value depends at most linearly on its previous value.

• Prevent super-exponential growth: x← x2 (so the value is x(2
n))

▶ Non-linear dependencies only of variables from blocks with lower indices
▶ Solve recurrence to obtain closed form.
▶ Periodic rational: there exists n ∈ N s.t. λn ∈ Q for λ ∈ Q

√
3 and i as (

√
3)2 ∈ Q and i2 ∈ Q ✓ 2 + 3i 7

6 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Periodic Rational Solvable Loops

while (τ) doS1...
Sd

←
A1 0 0

0
. . . 0

0 0 Ad

S1...
Sd

+

p1...
pd

end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ Partition variables into blocks:
S1 ⊎ · · · ⊎ Sd

▶ Ai ∈ Z|Si|×|Si| integer matrix

with
periodic rational eigenvalues

▶ pi ∈ Z[
∪

j<i Sj]
|Si| polynomials

▶ Variable value depends at most linearly on its previous value.

• Prevent super-exponential growth: x← x2 (so the value is x(2
n))

▶ Non-linear dependencies only of variables from blocks with lower indices
▶ Solve recurrence to obtain closed form.
▶ Periodic rational: there exists n ∈ N s.t. λn ∈ Q for λ ∈ Q

√
3 and i as (

√
3)2 ∈ Q and i2 ∈ Q ✓ 2 + 3i 7

6 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Periodic Rational Solvable Loops

while (τ) doS1...
Sd

←
A1 0 0

0
. . . 0

0 0 Ad

S1...
Sd

+

p1...
pd

end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ Partition variables into blocks:
S1 ⊎ · · · ⊎ Sd

▶ Ai ∈ Z|Si|×|Si| integer matrix

with
periodic rational eigenvalues

▶ pi ∈ Z[
∪

j<i Sj]
|Si| polynomials

▶ Variable value depends at most linearly on its previous value.
• Prevent super-exponential growth: x← x2 (so the value is x(2

n))

▶ Non-linear dependencies only of variables from blocks with lower indices
▶ Solve recurrence to obtain closed form.
▶ Periodic rational: there exists n ∈ N s.t. λn ∈ Q for λ ∈ Q

√
3 and i as (

√
3)2 ∈ Q and i2 ∈ Q ✓ 2 + 3i 7

6 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Periodic Rational Solvable Loops

while (τ) doS1...
Sd

←
A1 0 0

0
. . . 0

0 0 Ad

S1...
Sd

+
p1...
pd

end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ Partition variables into blocks:
S1 ⊎ · · · ⊎ Sd

▶ Ai ∈ Z|Si|×|Si| integer matrix

with
periodic rational eigenvalues

▶ pi ∈ Z[
∪

j<i Sj]
|Si| polynomials

▶ Variable value depends at most linearly on its previous value.
• Prevent super-exponential growth: x← x2 (so the value is x(2

n))

▶ Non-linear dependencies only of variables from blocks with lower indices
▶ Solve recurrence to obtain closed form.
▶ Periodic rational: there exists n ∈ N s.t. λn ∈ Q for λ ∈ Q

√
3 and i as (

√
3)2 ∈ Q and i2 ∈ Q ✓ 2 + 3i 7

6 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Periodic Rational Solvable Loops

while (τ) doS1...
Sd

←
A1 0 0

0
. . . 0

0 0 Ad

S1...
Sd

+
p1...
pd

end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ Partition variables into blocks:
S1 ⊎ · · · ⊎ Sd

▶ Ai ∈ Z|Si|×|Si| integer matrix

with
periodic rational eigenvalues

▶ pi ∈ Z[
∪

j<i Sj]
|Si| polynomials

▶ Variable value depends at most linearly on its previous value.
• Prevent super-exponential growth: x← x2 (so the value is x(2

n))
▶ Non-linear dependencies only of variables from blocks with lower indices

▶ Solve recurrence to obtain closed form.
▶ Periodic rational: there exists n ∈ N s.t. λn ∈ Q for λ ∈ Q

√
3 and i as (

√
3)2 ∈ Q and i2 ∈ Q ✓ 2 + 3i 7

6 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Periodic Rational Solvable Loops

while (τ) doS1...
Sd

←
A1 0 0

0
. . . 0

0 0 Ad

S1...
Sd

+
p1...
pd

end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ Partition variables into blocks:
S1 ⊎ · · · ⊎ Sd

▶ Ai ∈ Z|Si|×|Si| integer matrix

with
periodic rational eigenvalues

▶ pi ∈ Z[
∪

j<i Sj]
|Si| polynomials

▶ Variable value depends at most linearly on its previous value.
• Prevent super-exponential growth: x← x2 (so the value is x(2

n))
▶ Non-linear dependencies only of variables from blocks with lower indices
▶ Solve recurrence to obtain closed form.

▶ Periodic rational: there exists n ∈ N s.t. λn ∈ Q for λ ∈ Q

√
3 and i as (

√
3)2 ∈ Q and i2 ∈ Q ✓ 2 + 3i 7

6 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Periodic Rational Solvable Loops

while (x1 > 0) do

x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ Partition variables into blocks:
S1 ⊎ · · · ⊎ Sd

▶ Ai ∈ Z|Si|×|Si| integer matrix

with
periodic rational eigenvalues

▶ pi ∈ Z[
∪

j<i Sj]
|Si| polynomials

▶ Variable value depends at most linearly on its previous value.
• Prevent super-exponential growth: x← x2 (so the value is x(2

n))
▶ Non-linear dependencies only of variables from blocks with lower indices
▶ Solve recurrence to obtain closed form.

▶ Periodic rational: there exists n ∈ N s.t. λn ∈ Q for λ ∈ Q√
3 and i as (

√
3)2 ∈ Q and i2 ∈ Q ✓ 2 + 3i 7

6 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Periodic Rational Solvable Loops

while (x1 > 0) do
x1

x2
x3
x4

←

1 0 0 0

0 1 0 0
0 0 3 2
0 0 −5 −3

x1

x2
x3
x4

+

−1

x21
0
0

end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ Partition variables into blocks:
S1 ⊎ · · · ⊎ Sd

▶ Ai ∈ Z|Si|×|Si| integer matrix

with
periodic rational eigenvalues

▶ pi ∈ Z[
∪

j<i Sj]
|Si| polynomials

▶ Variable value depends at most linearly on its previous value.
• Prevent super-exponential growth: x← x2 (so the value is x(2

n))
▶ Non-linear dependencies only of variables from blocks with lower indices
▶ Solve recurrence to obtain closed form.

▶ Periodic rational: there exists n ∈ N s.t. λn ∈ Q for λ ∈ Q√
3 and i as (

√
3)2 ∈ Q and i2 ∈ Q ✓ 2 + 3i 7

6 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Periodic Rational Solvable Loops

while (x1 > 0) do
x1
x2

x3
x4

←

1 0 0 0
0 1 0 0

0 0 3 2
0 0 −5 −3

x1
x2

x3
x4

+

−1
x21

0
0

end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ Partition variables into blocks:
S1 ⊎ · · · ⊎ Sd

▶ Ai ∈ Z|Si|×|Si| integer matrix

with
periodic rational eigenvalues

▶ pi ∈ Z[
∪

j<i Sj]
|Si| polynomials

▶ Variable value depends at most linearly on its previous value.
• Prevent super-exponential growth: x← x2 (so the value is x(2

n))
▶ Non-linear dependencies only of variables from blocks with lower indices
▶ Solve recurrence to obtain closed form.

▶ Periodic rational: there exists n ∈ N s.t. λn ∈ Q for λ ∈ Q√
3 and i as (

√
3)2 ∈ Q and i2 ∈ Q ✓ 2 + 3i 7

6 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Periodic Rational Solvable Loops

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ Partition variables into blocks:
S1 ⊎ · · · ⊎ Sd

▶ Ai ∈ Z|Si|×|Si| integer matrix

with
periodic rational eigenvalues

▶ pi ∈ Z[
∪

j<i Sj]
|Si| polynomials

▶ Variable value depends at most linearly on its previous value.
• Prevent super-exponential growth: x← x2 (so the value is x(2

n))
▶ Non-linear dependencies only of variables from blocks with lower indices
▶ Solve recurrence to obtain closed form.

▶ Periodic rational: there exists n ∈ N s.t. λn ∈ Q for λ ∈ Q√
3 and i as (

√
3)2 ∈ Q and i2 ∈ Q ✓ 2 + 3i 7

6 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Closed Forms: PRS Loops

▶ Closed forms are computable for all prs loops.

• poly-exponential expressions:

∑
j αj · naj · bnj with αj ∈ Q[x1, . . . , xd], aj ∈ N and bj ∈ Q

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ closed form for x2:

x2+n·(16+x1+x21−x1 ·n− n
2+

n2

3)

▶ closed form for x3:

1
2 · α · (−i)

n + 1
2 · α · i

n for a linear
polynomial α.

▶ How to handle algebraic Q \Q numbers?
▶When do we have polynomial size bounds?

• When are (polynomial) time bounds computable?

7 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Closed Forms: PRS Loops

▶ Closed forms are computable for all prs loops.
• poly-exponential expressions:

∑
j αj · naj · bnj with αj ∈ Q[x1, . . . , xd], aj ∈ N and bj ∈ Q

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ closed form for x2:

x2+n·(16+x1+x21−x1 ·n− n
2+

n2

3)

▶ closed form for x3:

1
2 · α · (−i)

n + 1
2 · α · i

n for a linear
polynomial α.

▶ How to handle algebraic Q \Q numbers?
▶When do we have polynomial size bounds?

• When are (polynomial) time bounds computable?

7 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Closed Forms: PRS Loops

▶ Closed forms are computable for all prs loops.
• poly-exponential expressions:∑

j αj · naj · bnj with αj ∈ Q[x1, . . . , xd], aj ∈ N and bj ∈ Q

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ closed form for x2:

x2+n·(16+x1+x21−x1 ·n− n
2+

n2

3)

▶ closed form for x3:

1
2 · α · (−i)

n + 1
2 · α · i

n for a linear
polynomial α.

▶ How to handle algebraic Q \Q numbers?
▶When do we have polynomial size bounds?

• When are (polynomial) time bounds computable?

7 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Closed Forms: PRS Loops

▶ Closed forms are computable for all prs loops.
• poly-exponential expressions:∑

j αj · naj · bnj with αj ∈ Q[x1, . . . , xd], aj ∈ N and bj ∈ Q

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ closed form for x2:

x2+n·(16+x1+x21−x1 ·n− n
2+

n2

3)

▶ closed form for x3:

1
2 · α · (−i)

n + 1
2 · α · i

n for a linear
polynomial α.

▶ How to handle algebraic Q \Q numbers?
▶When do we have polynomial size bounds?

• When are (polynomial) time bounds computable?

7 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Closed Forms: PRS Loops

▶ Closed forms are computable for all prs loops.
• poly-exponential expressions:∑

j αj · naj · bnj with αj ∈ Q[x1, . . . , xd], aj ∈ N and bj ∈ Q

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ closed form for x2:

x2+n·(16+x1+x21−x1 ·n− n
2+

n2

3)

▶ closed form for x3:

1
2 · α · (−i)

n + 1
2 · α · i

n for a linear
polynomial α.

▶ How to handle algebraic Q \Q numbers?
▶When do we have polynomial size bounds?

• When are (polynomial) time bounds computable?

7 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Closed Forms: PRS Loops

▶ Closed forms are computable for all prs loops.
• poly-exponential expressions:∑

j αj · naj · bnj with αj ∈ Q[x1, . . . , xd], aj ∈ N and bj ∈ Q

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ closed form for x2:
x2+n·(16+x1+x21−x1 ·n− n

2+
n2

3)

▶ closed form for x3:

1
2 · α · (−i)

n + 1
2 · α · i

n for a linear
polynomial α.

▶ How to handle algebraic Q \Q numbers?
▶When do we have polynomial size bounds?

• When are (polynomial) time bounds computable?

7 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Closed Forms: PRS Loops

▶ Closed forms are computable for all prs loops.
• poly-exponential expressions:∑

j αj · naj · bnj with αj ∈ Q[x1, . . . , xd], aj ∈ N and bj ∈ Q

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ closed form for x2:
x2+n·(16+x1+x21−x1 ·n− n

2+
n2

3)

▶ closed form for x3:

1
2 · α · (−i)

n + 1
2 · α · i

n for a linear
polynomial α.

▶ How to handle algebraic Q \Q numbers?
▶When do we have polynomial size bounds?

• When are (polynomial) time bounds computable?

7 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Closed Forms: PRS Loops

▶ Closed forms are computable for all prs loops.
• poly-exponential expressions:∑

j αj · naj · bnj with αj ∈ Q[x1, . . . , xd], aj ∈ N and bj ∈ Q

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ closed form for x2:
x2+n·(16+x1+x21−x1 ·n− n

2+
n2

3)

▶ closed form for x3:

1
2 · α · (−i)

n + 1
2 · α · i

n for a linear
polynomial α.

▶ How to handle algebraic Q \Q numbers?
▶When do we have polynomial size bounds?

• When are (polynomial) time bounds computable?

7 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Closed Forms: PRS Loops

▶ Closed forms are computable for all prs loops.
• poly-exponential expressions:∑

j αj · naj · bnj with αj ∈ Q[x1, . . . , xd], aj ∈ N and bj ∈ Q

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ closed form for x2:
x2+n·(16+x1+x21−x1 ·n− n

2+
n2

3)

▶ closed form for x3:

1
2 · α · (−i)

n + 1
2 · α · i

n for a linear
polynomial α.

▶ How to handle algebraic Q \Q numbers?
▶When do we have polynomial size bounds?

• When are (polynomial) time bounds computable?

7 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Closed Forms: PRS Loops

▶ Closed forms are computable for all prs loops.
• poly-exponential expressions:∑

j αj · naj · bnj with αj ∈ Q[x1, . . . , xd], aj ∈ N and bj ∈ Q

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ closed form for x2:
x2+n·(16+x1+x21−x1 ·n− n

2+
n2

3)

▶ closed form for x3:
1
2 · α · (−i)

n + 1
2 · α · i

n for a linear
polynomial α.

▶ How to handle algebraic Q \Q numbers?
▶When do we have polynomial size bounds?

• When are (polynomial) time bounds computable?

7 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Closed Forms: PRS Loops

▶ Closed forms are computable for all prs loops.
• poly-exponential expressions:∑

j αj · naj · bnj with αj ∈ Q[x1, . . . , xd], aj ∈ N and bj ∈ Q

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ closed form for x2:
x2+n·(16+x1+x21−x1 ·n− n

2+
n2

3)

▶ closed form for x3:
1
2 · α · (−i)

n + 1
2 · α · i

n for a linear
polynomial α.

▶ How to handle algebraic Q \Q numbers?
▶When do we have polynomial size bounds?

• When are (polynomial) time bounds computable?

7 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Closed Forms: PRS Loops

▶ Closed forms are computable for all prs loops.
• poly-exponential expressions:∑

j αj · naj · bnj with αj ∈ Q[x1, . . . , xd], aj ∈ N and bj ∈ Q

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ closed form for x2:
x2+n·(16+x1+x21−x1 ·n− n

2+
n2

3)

▶ closed form for x3:
1
2 · α · (−i)

n + 1
2 · α · i

n for a linear
polynomial α.

▶ How to handle algebraic Q \Q numbers?
▶When do we have polynomial size bounds?

• When are (polynomial) time bounds computable?

7 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Closed Forms: PRS Loops

▶ Closed forms are computable for all prs loops.
• poly-exponential expressions:∑

j αj · naj · bnj with αj ∈ Q[x1, . . . , xd], aj ∈ N and bj ∈ Q

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ closed form for x2:
x2+n·(16+x1+x21−x1 ·n− n

2+
n2

3)

▶ closed form for x3:
1
2 · α · (−i)

n + 1
2 · α · i

n for a linear
polynomial α.

▶ How to handle algebraic Q \Q numbers?

▶When do we have polynomial size bounds?

• When are (polynomial) time bounds computable?

7 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Closed Forms: PRS Loops

▶ Closed forms are computable for all prs loops.
• poly-exponential expressions:∑

j αj · naj · bnj with αj ∈ Q[x1, . . . , xd], aj ∈ N and bj ∈ Q

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ closed form for x2:
x2+n·(16+x1+x21−x1 ·n− n

2+
n2

3)

▶ closed form for x3:
1
2 · α · (−i)

n + 1
2 · α · i

n for a linear
polynomial α.

▶ How to handle algebraic Q \Q numbers?
▶When do we have polynomial size bounds?

• When are (polynomial) time bounds computable?

7 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Closed Forms: PRS Loops

▶ Closed forms are computable for all prs loops.
• poly-exponential expressions:∑

j αj · naj · bnj with αj ∈ Q[x1, . . . , xd], aj ∈ N and bj ∈ Q

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ closed form for x2:
x2+n·(16+x1+x21−x1 ·n− n

2+
n2

3)

▶ closed form for x3:
1
2 · α · (−i)

n + 1
2 · α · i

n for a linear
polynomial α.

▶ How to handle algebraic Q \Q numbers?
▶When do we have polynomial size bounds?

• When are (polynomial) time bounds computable?

7 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x3

while (x1 > 0) dox1x3
x4

←
 x1 − 1

3x3 + 2x4
−5x3 − 3x4

end

▶ Compute closed form for x3.
▶ Over-approximate closed form to non-negative,
weakly monotonic increasing expression.

▶ Replace n by an over-approximation of the
runtime.

▶ Closed form: clnx3 =
1
2 · α · (−i)

n + 1
2 · α · i

n

▶ Over-approximation:

1
2 · |α| · (| − i|)n + 1

2 · |α| · |i|
n

▶ Size bound: |α| = 4 · x3 + 2 · x4
▶ How to handle algebraic Q \Q numbers?

Take absolute value!

▶When do we have polynomial size bounds?

• All eigenvalues λ are unit: |λ| ≤ 1

• When are (polynomial) time bounds computable?

8 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x3

while (x1 > 0) dox1x3
x4

←
 x1 − 1

3x3 + 2x4
−5x3 − 3x4

end

▶ Compute closed form for x3.
▶ Over-approximate closed form to non-negative,
weakly monotonic increasing expression.

▶ Replace n by an over-approximation of the
runtime.

▶ Closed form: clnx3 =
1
2 · α · (−i)

n + 1
2 · α · i

n

▶ Over-approximation:

1
2 · |α| · (| − i|)n + 1

2 · |α| · |i|
n

▶ Size bound: |α| = 4 · x3 + 2 · x4
▶ How to handle algebraic Q \Q numbers?

Take absolute value!

▶When do we have polynomial size bounds?

• All eigenvalues λ are unit: |λ| ≤ 1

• When are (polynomial) time bounds computable?

8 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x3

while (x1 > 0) dox1x3
x4

←
 x1 − 1

3x3 + 2x4
−5x3 − 3x4

end

▶ Compute closed form for x3.
▶ Over-approximate closed form to non-negative,
weakly monotonic increasing expression.

▶ Replace n by an over-approximation of the
runtime.

▶ Closed form: clnx3 =
1
2 · α · (−i)

n + 1
2 · α · i

n

▶ Over-approximation:

1
2 · |α| · (| − i|)n + 1

2 · |α| · |i|
n

▶ Size bound: |α| = 4 · x3 + 2 · x4
▶ How to handle algebraic Q \Q numbers?

Take absolute value!

▶When do we have polynomial size bounds?

• All eigenvalues λ are unit: |λ| ≤ 1

• When are (polynomial) time bounds computable?

8 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x3

while (x1 > 0) dox1x3
x4

←
 x1 − 1

3x3 + 2x4
−5x3 − 3x4

end

▶ Compute closed form for x3.
▶ Over-approximate closed form to non-negative,
weakly monotonic increasing expression.

▶ Replace n by an over-approximation of the
runtime.

▶ Closed form: clnx3 =
1
2 · α · (−i)

n + 1
2 · α · i

n

▶ Over-approximation: 1
2 · |α| · (| − i|)n + 1

2 · |α| · |i|
n

▶ Size bound: |α| = 4 · x3 + 2 · x4
▶ How to handle algebraic Q \Q numbers?

Take absolute value!

▶When do we have polynomial size bounds?

• All eigenvalues λ are unit: |λ| ≤ 1

• When are (polynomial) time bounds computable?

8 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x3

while (x1 > 0) dox1x3
x4

←
 x1 − 1

3x3 + 2x4
−5x3 − 3x4

end

▶ Compute closed form for x3.
▶ Over-approximate closed form to non-negative,
weakly monotonic increasing expression.

▶ Replace n by an over-approximation of the
runtime.

▶ Closed form: clnx3 =
1
2 · α · (−i)

n + 1
2 · α · i

n

▶ Over-approximation: 1
2 · |α| · (| − i|)n + 1

2 · |α| · |i|
n = 1

2 · |α|+
1
2 · |α|

▶ Size bound: |α| = 4 · x3 + 2 · x4
▶ How to handle algebraic Q \Q numbers?

Take absolute value!

▶When do we have polynomial size bounds?

• All eigenvalues λ are unit: |λ| ≤ 1

• When are (polynomial) time bounds computable?

8 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x3

while (x1 > 0) dox1x3
x4

←
 x1 − 1

3x3 + 2x4
−5x3 − 3x4

end

▶ Compute closed form for x3.
▶ Over-approximate closed form to non-negative,
weakly monotonic increasing expression.

▶ Replace n by an over-approximation of the
runtime.

▶ Closed form: clnx3 =
1
2 · α · (−i)

n + 1
2 · α · i

n

▶ Over-approximation: 1
2 · |α| · (| − i|)n + 1

2 · |α| · |i|
n = |α|

▶ Size bound: |α| = 4 · x3 + 2 · x4
▶ How to handle algebraic Q \Q numbers?

Take absolute value!

▶When do we have polynomial size bounds?

• All eigenvalues λ are unit: |λ| ≤ 1

• When are (polynomial) time bounds computable?

8 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x3

while (x1 > 0) dox1x3
x4

←
 x1 − 1

3x3 + 2x4
−5x3 − 3x4

end

▶ Compute closed form for x3.
▶ Over-approximate closed form to non-negative,
weakly monotonic increasing expression.

▶ Replace n by an over-approximation of the
runtime.

▶ Closed form: clnx3 =
1
2 · α · (−i)

n + 1
2 · α · i

n

▶ Over-approximation: 1
2 · |α| · (| − i|)n + 1

2 · |α| · |i|
n = |α|

▶ Size bound: |α| = 4 · x3 + 2 · x4

▶ How to handle algebraic Q \Q numbers?

Take absolute value!

▶When do we have polynomial size bounds?

• All eigenvalues λ are unit: |λ| ≤ 1

• When are (polynomial) time bounds computable?

8 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x3

while (x1 > 0) dox1x3
x4

←
 x1 − 1

3x3 + 2x4
−5x3 − 3x4

end

▶ Compute closed form for x3.
▶ Over-approximate closed form to non-negative,
weakly monotonic increasing expression.

▶ Replace n by an over-approximation of the
runtime.

▶ Closed form: clnx3 =
1
2 · α · (−i)

n + 1
2 · α · i

n

▶ Over-approximation: 1
2 · |α| · (| − i|)n + 1

2 · |α| · |i|
n = |α|

▶ Size bound: |α| = 4 · x3 + 2 · x4
▶ How to handle algebraic Q \Q numbers?

Take absolute value!
▶When do we have polynomial size bounds?

• All eigenvalues λ are unit: |λ| ≤ 1

• When are (polynomial) time bounds computable?

8 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x3

while (x1 > 0) dox1x3
x4

←
 x1 − 1

3x3 + 2x4
−5x3 − 3x4

end

▶ Compute closed form for x3.
▶ Over-approximate closed form to non-negative,
weakly monotonic increasing expression.

▶ Replace n by an over-approximation of the
runtime.

▶ Closed form: clnx3 =
1
2 · α · (−i)

n + 1
2 · α · i

n

▶ Over-approximation: 1
2 · |α| · (| − i|)n + 1

2 · |α| · |i|
n = |α|

▶ Size bound: |α| = 4 · x3 + 2 · x4
▶ How to handle algebraic Q \Q numbers? Take absolute value!

▶When do we have polynomial size bounds?

• All eigenvalues λ are unit: |λ| ≤ 1

• When are (polynomial) time bounds computable?

8 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x3

while (x1 > 0) dox1x3
x4

←
 x1 − 1

3x3 + 2x4
−5x3 − 3x4

end

▶ Compute closed form for x3.
▶ Over-approximate closed form to non-negative,
weakly monotonic increasing expression.

▶ Replace n by an over-approximation of the
runtime.

▶ Closed form: clnx3 =
1
2 · α · (−i)

n + 1
2 · α · i

n

▶ Over-approximation: 1
2 · |α| · (| − i|)n + 1

2 · |α| · |i|
n = |α|

▶ Size bound: |α| = 4 · x3 + 2 · x4
▶ How to handle algebraic Q \Q numbers? Take absolute value!
▶When do we have polynomial size bounds?

• All eigenvalues λ are unit: |λ| ≤ 1

• When are (polynomial) time bounds computable?

8 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x3

while (x1 > 0) dox1x3
x4

←
 x1 − 1

3x3 + 2x4
−5x3 − 3x4

end

▶ Compute closed form for x3.
▶ Over-approximate closed form to non-negative,
weakly monotonic increasing expression.

▶ Replace n by an over-approximation of the
runtime.

▶ Closed form: clnx3 =
1
2 · α · (−i)

n + 1
2 · α · i

n

▶ Over-approximation: 1
2 · |α| · (| − i|)n + 1

2 · |α| · |i|
n = |α|

▶ Size bound: |α| = 4 · x3 + 2 · x4
▶ How to handle algebraic Q \Q numbers? Take absolute value!
▶When do we have polynomial size bounds?

• All eigenvalues λ are unit: |λ| ≤ 1

• When are (polynomial) time bounds computable?

8 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x3

while (x1 > 0) dox1x3
x4

←
 x1 − 1

3x3 + 2x4
−5x3 − 3x4

end

▶ Compute closed form for x3.
▶ Over-approximate closed form to non-negative,
weakly monotonic increasing expression.

▶ Replace n by an over-approximation of the
runtime.

▶ Closed form: clnx3 =
1
2 · α · (−i)

n + 1
2 · α · i

n

▶ Over-approximation: 1
2 · |α| · (| − i|)n + 1

2 · |α| · |i|
n = |α|

▶ Size bound: |α| = 4 · x3 + 2 · x4
▶ How to handle algebraic Q \Q numbers? Take absolute value!
▶When do we have polynomial size bounds?

• All eigenvalues λ are unit: |λ| ≤ 1

• When are (polynomial) time bounds computable?

8 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

prs loops

size bounds time bound
completeness completeness

simple integer programs

size bounds time bounds
completeness completeness

Lifting

9 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

prs loops

size bounds time bounds
completeness completeness

simple integer programs

size bounds time bounds
completeness completeness

Lifting

9 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Periodic Rational Solvable Loops

while (τ) doS1...
Sd

←
A1 0 0

0
. . . 0

0 0 Ad

S1...
Sd

+
p1...
pd

end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ Partition variables into blocks:
S1 ⊎ · · · ⊎ Sd

▶ Ai ∈ Z|Si|×|Si| integer matrix

with
periodic rational eigenvalues

▶ pi ∈ Z[
∪

j<i Sj]
|Si| polynomials

▶ Variable value depends at most linearly on its previous value.
• Prevent super-exponential growth: x← x2 (so the value is x(2

n))
▶ Non-linear dependencies only of variables from blocks with lower indices
▶ Solve recurrence to obtain closed form.

▶ Periodic rational: there exists n ∈ N s.t. λn ∈ Q for λ ∈ Q

√
3 and i as (

√
3)2 ∈ Q and i2 ∈ Q ✓ 2 + 3i 7

10 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Periodic Rational Solvable Loops

while (τ) doS1...
Sd

←
A1 0 0

0
. . . 0

0 0 Ad

S1...
Sd

+
p1...
pd

end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ Partition variables into blocks:
S1 ⊎ · · · ⊎ Sd

▶ Ai ∈ Z|Si|×|Si| integer matrix

with
periodic rational eigenvalues

▶ pi ∈ Z[
∪

j<i Sj]
|Si| polynomials

▶ Variable value depends at most linearly on its previous value.
• Prevent super-exponential growth: x← x2 (so the value is x(2

n))
▶ Non-linear dependencies only of variables from blocks with lower indices
▶ Solve recurrence to obtain closed form.
▶ Periodic rational: there exists n ∈ N s.t. λn ∈ Q for λ ∈ Q

√
3 and i as (

√
3)2 ∈ Q and i2 ∈ Q ✓ 2 + 3i 7

10 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Periodic Rational Solvable Loops

while (τ) doS1...
Sd

←
A1 0 0

0
. . . 0

0 0 Ad

S1...
Sd

+
p1...
pd

end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ Partition variables into blocks:
S1 ⊎ · · · ⊎ Sd

▶ Ai ∈ Z|Si|×|Si| integer matrix

with
periodic rational eigenvalues

▶ pi ∈ Z[
∪

j<i Sj]
|Si| polynomials

▶ Variable value depends at most linearly on its previous value.
• Prevent super-exponential growth: x← x2 (so the value is x(2

n))
▶ Non-linear dependencies only of variables from blocks with lower indices
▶ Solve recurrence to obtain closed form.
▶ Periodic rational: there exists n ∈ N s.t. λn ∈ Q for λ ∈ Q√

3 and i as (
√
3)2 ∈ Q and i2 ∈ Q ✓

2 + 3i 7

10 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Periodic Rational Solvable Loops

while (τ) doS1...
Sd

←
A1 0 0

0
. . . 0

0 0 Ad

S1...
Sd

+
p1...
pd

end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ Partition variables into blocks:
S1 ⊎ · · · ⊎ Sd

▶ Ai ∈ Z|Si|×|Si| integer matrix

with
periodic rational eigenvalues

▶ pi ∈ Z[
∪

j<i Sj]
|Si| polynomials

▶ Variable value depends at most linearly on its previous value.
• Prevent super-exponential growth: x← x2 (so the value is x(2

n))
▶ Non-linear dependencies only of variables from blocks with lower indices
▶ Solve recurrence to obtain closed form.
▶ Periodic rational: there exists n ∈ N s.t. λn ∈ Q for λ ∈ Q√

3 and i as (
√
3)2 ∈ Q and i2 ∈ Q ✓ 2 + 3i 7

10 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Periodic Rational Solvable Loops

while (τ) doS1...
Sd

←
A1 0 0

0
. . . 0

0 0 Ad

S1...
Sd

+
p1...
pd

end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ Partition variables into blocks:
S1 ⊎ · · · ⊎ Sd

▶ Ai ∈ Z|Si|×|Si| integer matrix with
periodic rational eigenvalues

▶ pi ∈ Z[
∪

j<i Sj]
|Si| polynomials

▶ Variable value depends at most linearly on its previous value.
• Prevent super-exponential growth: x← x2 (so the value is x(2

n))
▶ Non-linear dependencies only of variables from blocks with lower indices
▶ Solve recurrence to obtain closed form.
▶ Periodic rational: there exists n ∈ N s.t. λn ∈ Q for λ ∈ Q√

3 and i as (
√
3)2 ∈ Q and i2 ∈ Q ✓ 2 + 3i 7

10 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

prs loops

size bounds time bounds
completeness completeness

simple integer programs

size bounds time bounds
completeness completeness

Lifting

11 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

prs loops

size bounds time bounds
completeness completeness

simple integer programs

size bounds time bounds
completeness completeness

Lifting

11 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: PRS Loops

▶ (Polynomial) time bounds are computable for all terminating prs loops.

• chain (unroll) loops accordingly to their period

⇝ integer eigenvalues

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ 1 has period 1

▶ i has period 2 as i2 = −1 ∈ Q
▶ −i has period 2 as(−i)2 = −1 ∈ Q

⇒ chain loop once

while (x1 > 0) do

x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

x1
x2
x3
x4

+

−2
x21 + (x1 − 1)2

0
0

end

▶ Prove termination for
chained loops [SAS ’20]
• co-NP-complete for
linear arithmetic

▶ Find time bounds for
terminating chained
loops [LPAR ’20]

▶ Derive time bound for
original loops

12 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: PRS Loops

▶ (Polynomial) time bounds are computable for all terminating prs loops.
• chain (unroll) loops accordingly to their period

⇝ integer eigenvalues
while (x1 > 0) do

x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ 1 has period 1

▶ i has period 2 as i2 = −1 ∈ Q
▶ −i has period 2 as(−i)2 = −1 ∈ Q

⇒ chain loop once

while (x1 > 0) do

x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

x1
x2
x3
x4

+

−2
x21 + (x1 − 1)2

0
0

end

▶ Prove termination for
chained loops [SAS ’20]
• co-NP-complete for
linear arithmetic

▶ Find time bounds for
terminating chained
loops [LPAR ’20]

▶ Derive time bound for
original loops

12 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: PRS Loops

▶ (Polynomial) time bounds are computable for all terminating prs loops.
• chain (unroll) loops accordingly to their period⇝ integer eigenvalues

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ 1 has period 1

▶ i has period 2 as i2 = −1 ∈ Q
▶ −i has period 2 as(−i)2 = −1 ∈ Q

⇒ chain loop once

while (x1 > 0) do

x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

x1
x2
x3
x4

+

−2
x21 + (x1 − 1)2

0
0

end

▶ Prove termination for
chained loops [SAS ’20]
• co-NP-complete for
linear arithmetic

▶ Find time bounds for
terminating chained
loops [LPAR ’20]

▶ Derive time bound for
original loops

12 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: PRS Loops

▶ (Polynomial) time bounds are computable for all terminating prs loops.
• chain (unroll) loops accordingly to their period⇝ integer eigenvalues

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ 1 has period 1

▶ i has period 2 as i2 = −1 ∈ Q
▶ −i has period 2 as(−i)2 = −1 ∈ Q

⇒ chain loop once

while (x1 > 0) do

x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

x1
x2
x3
x4

+

−2
x21 + (x1 − 1)2

0
0

end

▶ Prove termination for
chained loops [SAS ’20]
• co-NP-complete for
linear arithmetic

▶ Find time bounds for
terminating chained
loops [LPAR ’20]

▶ Derive time bound for
original loops

12 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: PRS Loops

▶ (Polynomial) time bounds are computable for all terminating prs loops.
• chain (unroll) loops accordingly to their period⇝ integer eigenvalues

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ 1 has period 1

▶ i has period 2 as i2 = −1 ∈ Q
▶ −i has period 2 as(−i)2 = −1 ∈ Q

⇒ chain loop once

while (x1 > 0) do

x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

x1
x2
x3
x4

+

−2
x21 + (x1 − 1)2

0
0

end

▶ Prove termination for
chained loops [SAS ’20]
• co-NP-complete for
linear arithmetic

▶ Find time bounds for
terminating chained
loops [LPAR ’20]

▶ Derive time bound for
original loops

12 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: PRS Loops

▶ (Polynomial) time bounds are computable for all terminating prs loops.
• chain (unroll) loops accordingly to their period⇝ integer eigenvalues

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ 1 has period 1

▶ i has period 2 as i2 = −1 ∈ Q

▶ −i has period 2 as(−i)2 = −1 ∈ Q

⇒ chain loop once

while (x1 > 0) do

x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

x1
x2
x3
x4

+

−2
x21 + (x1 − 1)2

0
0

end

▶ Prove termination for
chained loops [SAS ’20]
• co-NP-complete for
linear arithmetic

▶ Find time bounds for
terminating chained
loops [LPAR ’20]

▶ Derive time bound for
original loops

12 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: PRS Loops

▶ (Polynomial) time bounds are computable for all terminating prs loops.
• chain (unroll) loops accordingly to their period⇝ integer eigenvalues

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ 1 has period 1

▶ i has period 2 as i2 = −1 ∈ Q
▶ −i has period 2 as(−i)2 = −1 ∈ Q

⇒ chain loop once

while (x1 > 0) do

x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

x1
x2
x3
x4

+

−2
x21 + (x1 − 1)2

0
0

end

▶ Prove termination for
chained loops [SAS ’20]
• co-NP-complete for
linear arithmetic

▶ Find time bounds for
terminating chained
loops [LPAR ’20]

▶ Derive time bound for
original loops

12 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: PRS Loops

▶ (Polynomial) time bounds are computable for all terminating prs loops.
• chain (unroll) loops accordingly to their period⇝ integer eigenvalues

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ 1 has period 1

▶ i has period 2 as i2 = −1 ∈ Q
▶ −i has period 2 as(−i)2 = −1 ∈ Q
⇒ chain loop once

while (x1 > 0) do

x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

x1
x2
x3
x4

+

−2
x21 + (x1 − 1)2

0
0

end

▶ Prove termination for
chained loops [SAS ’20]
• co-NP-complete for
linear arithmetic

▶ Find time bounds for
terminating chained
loops [LPAR ’20]

▶ Derive time bound for
original loops

12 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: PRS Loops

▶ (Polynomial) time bounds are computable for all terminating prs loops.
• chain (unroll) loops accordingly to their period⇝ integer eigenvalues

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ 1 has period 1

▶ i has period 2 as i2 = −1 ∈ Q
▶ −i has period 2 as(−i)2 = −1 ∈ Q
⇒ chain loop once

while (x1 > 0) do

x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

x1
x2
x3
x4

+

−2
x21 + (x1 − 1)2

0
0

end

▶ Prove termination for
chained loops [SAS ’20]
• co-NP-complete for
linear arithmetic

▶ Find time bounds for
terminating chained
loops [LPAR ’20]

▶ Derive time bound for
original loops

12 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: PRS Loops

▶ (Polynomial) time bounds are computable for all terminating prs loops.
• chain (unroll) loops accordingly to their period⇝ integer eigenvalues

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ 1 has period 1

▶ i has period 2 as i2 = −1 ∈ Q
▶ −i has period 2 as(−i)2 = −1 ∈ Q
⇒ chain loop once

while (x1 > 0) do
x1

x2
x3
x4

←

1 0 0 0

0 1 0 0
0 0 −1 0
0 0 0 −1

x1

x2
x3
x4

+

−2

x21 + (x1 − 1)2

0
0

end

▶ Prove termination for
chained loops [SAS ’20]
• co-NP-complete for
linear arithmetic

▶ Find time bounds for
terminating chained
loops [LPAR ’20]

▶ Derive time bound for
original loops

12 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: PRS Loops

▶ (Polynomial) time bounds are computable for all terminating prs loops.
• chain (unroll) loops accordingly to their period⇝ integer eigenvalues

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ 1 has period 1

▶ i has period 2 as i2 = −1 ∈ Q
▶ −i has period 2 as(−i)2 = −1 ∈ Q
⇒ chain loop once

while (x1 > 0) do
x1
x2

x3
x4

←

1 0 0 0
0 1 0 0

0 0 −1 0
0 0 0 −1

x1
x2

x3
x4

+

−2
x21 + (x1 − 1)2

0
0

end

▶ Prove termination for
chained loops [SAS ’20]
• co-NP-complete for
linear arithmetic

▶ Find time bounds for
terminating chained
loops [LPAR ’20]

▶ Derive time bound for
original loops

12 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: PRS Loops

▶ (Polynomial) time bounds are computable for all terminating prs loops.
• chain (unroll) loops accordingly to their period⇝ integer eigenvalues

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ 1 has period 1

▶ i has period 2 as i2 = −1 ∈ Q
▶ −i has period 2 as(−i)2 = −1 ∈ Q
⇒ chain loop once

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

x1
x2
x3
x4

+

−2
x21 + (x1 − 1)2

0
0

end

▶ Prove termination for
chained loops [SAS ’20]
• co-NP-complete for
linear arithmetic

▶ Find time bounds for
terminating chained
loops [LPAR ’20]

▶ Derive time bound for
original loops

12 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: PRS Loops

▶ (Polynomial) time bounds are computable for all terminating prs loops.
• chain (unroll) loops accordingly to their period⇝ integer eigenvalues

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ 1 has period 1

▶ i has period 2 as i2 = −1 ∈ Q
▶ −i has period 2 as(−i)2 = −1 ∈ Q
⇒ chain loop once

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

x1
x2
x3
x4

+

−2
x21 + (x1 − 1)2

0
0

end

▶ Prove termination for
chained loops [SAS ’20]
• co-NP-complete for
linear arithmetic

▶ Find time bounds for
terminating chained
loops [LPAR ’20]

▶ Derive time bound for
original loops

12 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: PRS Loops

▶ (Polynomial) time bounds are computable for all terminating prs loops.
• chain (unroll) loops accordingly to their period⇝ integer eigenvalues

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ 1 has period 1

▶ i has period 2 as i2 = −1 ∈ Q
▶ −i has period 2 as(−i)2 = −1 ∈ Q
⇒ chain loop once

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

x1
x2
x3
x4

+

−2
x21 + (x1 − 1)2

0
0

end

▶ Prove termination for
chained loops [SAS ’20]
• co-NP-complete for
linear arithmetic

▶ Find time bounds for
terminating chained
loops [LPAR ’20]

▶ Derive time bound for
original loops

12 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: PRS Loops

▶ (Polynomial) time bounds are computable for all terminating prs loops.
• chain (unroll) loops accordingly to their period⇝ integer eigenvalues

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

▶ 1 has period 1

▶ i has period 2 as i2 = −1 ∈ Q
▶ −i has period 2 as(−i)2 = −1 ∈ Q
⇒ chain loop once

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1

x1
x2
x3
x4

+

−2
x21 + (x1 − 1)2

0
0

end

▶ Prove termination for
chained loops [SAS ’20]
• co-NP-complete for
linear arithmetic

▶ Find time bounds for
terminating chained
loops [LPAR ’20]

▶ Derive time bound for
original loops

12 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: PRS Loops

▶ Closed forms are computable for all prs loops.

▶ Polynomial time bounds are computable for all terminating prs loops.
[LPAR ’20]

▶ Size bounds are computable for all terminating prs loops.
▶ Polynomial size bounds are computable for all unit prs loops.

• unit: for all eigenvalues λ ∈ Q we have |λ| ≤ 1

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

13 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: PRS Loops

▶ Closed forms are computable for all prs loops.
▶ Polynomial time bounds are computable for all terminating prs loops.
[LPAR ’20]

▶ Size bounds are computable for all terminating prs loops.
▶ Polynomial size bounds are computable for all unit prs loops.

• unit: for all eigenvalues λ ∈ Q we have |λ| ≤ 1

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

13 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: PRS Loops

▶ Closed forms are computable for all prs loops.
▶ Polynomial time bounds are computable for all terminating prs loops.
[LPAR ’20]

▶ Size bounds are computable for all terminating prs loops.

▶ Polynomial size bounds are computable for all unit prs loops.

• unit: for all eigenvalues λ ∈ Q we have |λ| ≤ 1

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

13 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: PRS Loops

▶ Closed forms are computable for all prs loops.
▶ Polynomial time bounds are computable for all terminating prs loops.
[LPAR ’20]

▶ Size bounds are computable for all terminating prs loops.
▶ Polynomial size bounds are computable for all unit prs loops.

• unit: for all eigenvalues λ ∈ Q we have |λ| ≤ 1

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

13 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: PRS Loops

▶ Closed forms are computable for all prs loops.
▶ Polynomial time bounds are computable for all terminating prs loops.
[LPAR ’20]

▶ Size bounds are computable for all terminating prs loops.
▶ Polynomial size bounds are computable for all unit prs loops.

• unit: for all eigenvalues λ ∈ Q we have |λ| ≤ 1

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

13 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: PRS Loops

▶ Closed forms are computable for all prs loops.
▶ Polynomial time bounds are computable for all terminating prs loops.
[LPAR ’20]

▶ Size bounds are computable for all terminating prs loops.
▶ Polynomial size bounds are computable for all unit prs loops.

• unit: for all eigenvalues λ ∈ Q we have |λ| ≤ 1

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3

x1
x2
x3
x4

+

−1
x21
0
0

end

13 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

prs loops

size bounds time bounds
completeness completeness

simple integer programs

size bounds time bounds
completeness completeness

Lifting

14 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

prs loops

size bounds time bounds
completeness completeness

simple integer programs

size bounds time bounds
completeness completeness

Lifting

14 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

while (x1 > 0) dox1x3
x4

←
 x1 − 1

3x3 + 2x4
−5x3 +−3x4

end

while (x3 > 0) do[
x3
y

]
←

[
x3 − 1
y + 1

]
end

▶ Size of y after second loop:
▶ Idea: Analyze different subprograms
and combine results

• y “locally” has size y + x3

▶ Respect size of variables:

• x3 is size bounded by 4 · x3 + 2 · x4.

Size of y:

y + x3y + x3 [x3/size(x3)]y + 4 · x3 + 2 · x4

15 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

while (x1 > 0) dox1x3
x4

←
 x1 − 1

3x3 + 2x4
−5x3 +−3x4

end
while (x3 > 0) do[

x3
y

]
←

[
x3 − 1
y + 1

]
end

▶ Size of y after second loop:
▶ Idea: Analyze different subprograms
and combine results

• y “locally” has size y + x3

▶ Respect size of variables:

• x3 is size bounded by 4 · x3 + 2 · x4.

Size of y:

y + x3y + x3 [x3/size(x3)]y + 4 · x3 + 2 · x4

15 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

while (x1 > 0) dox1x3
x4

←
 x1 − 1

3x3 + 2x4
−5x3 +−3x4

end
while (x3 > 0) do[

x3
y

]
←

[
x3 − 1
y + 1

]
end

▶ Size of y after second loop:

▶ Idea: Analyze different subprograms
and combine results

• y “locally” has size y + x3

▶ Respect size of variables:

• x3 is size bounded by 4 · x3 + 2 · x4.

Size of y:

y + x3y + x3 [x3/size(x3)]y + 4 · x3 + 2 · x4

15 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

while (x1 > 0) dox1x3
x4

←
 x1 − 1

3x3 + 2x4
−5x3 +−3x4

end
while (x3 > 0) do[

x3
y

]
←

[
x3 − 1
y + 1

]
end

▶ Size of y after second loop:
▶ Idea: Analyze different subprograms
and combine results

• y “locally” has size y + x3

▶ Respect size of variables:

• x3 is size bounded by 4 · x3 + 2 · x4.

Size of y:

y + x3y + x3 [x3/size(x3)]y + 4 · x3 + 2 · x4

15 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

while (x1 > 0) dox1x3
x4

←
 x1 − 1

3x3 + 2x4
−5x3 +−3x4

end

while (x3 > 0) do[
x3
y

]
←

[
x3 − 1
y + 1

]
end

▶ Size of y after second loop:
▶ Idea: Analyze different subprograms
and combine results

• y “locally” has size y + x3

▶ Respect size of variables:

• x3 is size bounded by 4 · x3 + 2 · x4.

Size of y:

y + x3y + x3 [x3/size(x3)]y + 4 · x3 + 2 · x4

15 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

while (x1 > 0) dox1x3
x4

←
 x1 − 1

3x3 + 2x4
−5x3 +−3x4

end

while (x3 > 0) do[
x3
y

]
←

[
x3 − 1
y + 1

]
end

▶ Size of y after second loop:
▶ Idea: Analyze different subprograms
and combine results
• y “locally” has size y + x3

▶ Respect size of variables:

• x3 is size bounded by 4 · x3 + 2 · x4.

Size of y:

y + x3y + x3 [x3/size(x3)]y + 4 · x3 + 2 · x4

15 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

while (x1 > 0) dox1x3
x4

←
 x1 − 1

3x3 + 2x4
−5x3 +−3x4

end

while (x3 > 0) do[
x3
y

]
←

[
x3 − 1
y + 1

]
end

▶ Size of y after second loop:
▶ Idea: Analyze different subprograms
and combine results
• y “locally” has size y + x3

▶ Respect size of variables:

• x3 is size bounded by 4 · x3 + 2 · x4.

Size of y: y + x3

y + x3 [x3/size(x3)]y + 4 · x3 + 2 · x4

15 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

while (x1 > 0) dox1x3
x4

←
 x1 − 1

3x3 + 2x4
−5x3 +−3x4

end
while (x3 > 0) do[

x3
y

]
←

[
x3 − 1
y + 1

]
end

▶ Size of y after second loop:
▶ Idea: Analyze different subprograms
and combine results
• y “locally” has size y + x3

▶ Respect size of variables:

• x3 is size bounded by 4 · x3 + 2 · x4.

Size of y: y + x3

y + x3 [x3/size(x3)]y + 4 · x3 + 2 · x4

15 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

while (x1 > 0) dox1x3
x4

←
 x1 − 1

3x3 + 2x4
−5x3 +−3x4

end
while (x3 > 0) do[

x3
y

]
←

[
x3 − 1
y + 1

]
end

▶ Size of y after second loop:
▶ Idea: Analyze different subprograms
and combine results
• y “locally” has size y + x3

▶ Respect size of variables:
• x3 is size bounded by 4 · x3 + 2 · x4.

Size of y: y + x3

y + x3 [x3/size(x3)]y + 4 · x3 + 2 · x4

15 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

while (x1 > 0) dox1x3
x4

←
 x1 − 1

3x3 + 2x4
−5x3 +−3x4

end
while (x3 > 0) do[

x3
y

]
←

[
x3 − 1
y + 1

]
end

▶ Size of y after second loop:
▶ Idea: Analyze different subprograms
and combine results
• y “locally” has size y + x3

▶ Respect size of variables:
• x3 is size bounded by 4 · x3 + 2 · x4.

Size of y:

y + x3

y + x3 [x3/size(x3)]

y + 4 · x3 + 2 · x4

15 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Size Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

while (x1 > 0) dox1x3
x4

←
 x1 − 1

3x3 + 2x4
−5x3 +−3x4

end
while (x3 > 0) do[

x3
y

]
←

[
x3 − 1
y + 1

]
end

▶ Size of y after second loop:
▶ Idea: Analyze different subprograms
and combine results
• y “locally” has size y + x3

▶ Respect size of variables:
• x3 is size bounded by 4 · x3 + 2 · x4.

Size of y:

y + x3y + x3 [x3/size(x3)]

y + 4 · x3 + 2 · x4

15 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Time Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

L1;
L2;
// y has size y + 4 · x3 + 2 · x4
while (y > 0) do[

y
]
←

[
y− 1

]
end

▶ How often do we execute the loop?
▶ Idea: Analyze different subprograms
and combine results

• loop is “locally” executed y times

▶ Respect size of variables:

• y is size bounded by y + 4 · x3 + 2 · x4

▶ How many times do we start to
evaluate the loop?

Number of loop executions:

yy [y/size(y)]y + 4 · x3 + 2 · x41 · (y + 4 · x3 + 2 · x4)

16 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Time Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

L1;
L2;

// y has size y + 4 · x3 + 2 · x4
while (y > 0) do[

y
]
←

[
y− 1

]
end

▶ How often do we execute the loop?
▶ Idea: Analyze different subprograms
and combine results

• loop is “locally” executed y times

▶ Respect size of variables:

• y is size bounded by y + 4 · x3 + 2 · x4

▶ How many times do we start to
evaluate the loop?

Number of loop executions:

yy [y/size(y)]y + 4 · x3 + 2 · x41 · (y + 4 · x3 + 2 · x4)

16 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Time Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

L1;
L2;
// y has size y + 4 · x3 + 2 · x4

while (y > 0) do[
y
]
←

[
y− 1

]
end

▶ How often do we execute the loop?
▶ Idea: Analyze different subprograms
and combine results

• loop is “locally” executed y times

▶ Respect size of variables:

• y is size bounded by y + 4 · x3 + 2 · x4

▶ How many times do we start to
evaluate the loop?

Number of loop executions:

yy [y/size(y)]y + 4 · x3 + 2 · x41 · (y + 4 · x3 + 2 · x4)

16 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Time Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

L1;
L2;
// y has size y + 4 · x3 + 2 · x4
while (y > 0) do[

y
]
←

[
y− 1

]
end

▶ How often do we execute the loop?
▶ Idea: Analyze different subprograms
and combine results

• loop is “locally” executed y times

▶ Respect size of variables:

• y is size bounded by y + 4 · x3 + 2 · x4

▶ How many times do we start to
evaluate the loop?

Number of loop executions:

yy [y/size(y)]y + 4 · x3 + 2 · x41 · (y + 4 · x3 + 2 · x4)

16 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Time Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

L1;
L2;
// y has size y + 4 · x3 + 2 · x4
while (y > 0) do[

y
]
←

[
y− 1

]
end

▶ How often do we execute the loop?

▶ Idea: Analyze different subprograms
and combine results

• loop is “locally” executed y times

▶ Respect size of variables:

• y is size bounded by y + 4 · x3 + 2 · x4

▶ How many times do we start to
evaluate the loop?

Number of loop executions:

yy [y/size(y)]y + 4 · x3 + 2 · x41 · (y + 4 · x3 + 2 · x4)

16 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Time Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

L1;
L2;
// y has size y + 4 · x3 + 2 · x4
while (y > 0) do[

y
]
←

[
y− 1

]
end

▶ How often do we execute the loop?
▶ Idea: Analyze different subprograms
and combine results

• loop is “locally” executed y times
▶ Respect size of variables:

• y is size bounded by y + 4 · x3 + 2 · x4

▶ How many times do we start to
evaluate the loop?

Number of loop executions:

yy [y/size(y)]y + 4 · x3 + 2 · x41 · (y + 4 · x3 + 2 · x4)

16 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Time Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

L1;
L2;
// y has size y + 4 · x3 + 2 · x4

while (y > 0) do[
y
]
←

[
y− 1

]
end

▶ How often do we execute the loop?
▶ Idea: Analyze different subprograms
and combine results

• loop is “locally” executed y times
▶ Respect size of variables:

• y is size bounded by y + 4 · x3 + 2 · x4

▶ How many times do we start to
evaluate the loop?

Number of loop executions:

yy [y/size(y)]y + 4 · x3 + 2 · x41 · (y + 4 · x3 + 2 · x4)

16 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Time Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

L1;
L2;
// y has size y + 4 · x3 + 2 · x4

while (y > 0) do[
y
]
←

[
y− 1

]
end

▶ How often do we execute the loop?
▶ Idea: Analyze different subprograms
and combine results
• loop is “locally” executed y times

▶ Respect size of variables:

• y is size bounded by y + 4 · x3 + 2 · x4

▶ How many times do we start to
evaluate the loop?

Number of loop executions:

yy [y/size(y)]y + 4 · x3 + 2 · x41 · (y + 4 · x3 + 2 · x4)

16 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Time Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

L1;
L2;
// y has size y + 4 · x3 + 2 · x4

while (y > 0) do[
y
]
←

[
y− 1

]
end

▶ How often do we execute the loop?
▶ Idea: Analyze different subprograms
and combine results
• loop is “locally” executed y times

▶ Respect size of variables:

• y is size bounded by y + 4 · x3 + 2 · x4

▶ How many times do we start to
evaluate the loop?

Number of loop executions: y

y [y/size(y)]y + 4 · x3 + 2 · x41 · (y + 4 · x3 + 2 · x4)

16 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Time Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

L1;
L2;
// y has size y + 4 · x3 + 2 · x4
while (y > 0) do[

y
]
←

[
y− 1

]
end

▶ How often do we execute the loop?
▶ Idea: Analyze different subprograms
and combine results
• loop is “locally” executed y times

▶ Respect size of variables:

• y is size bounded by y + 4 · x3 + 2 · x4
▶ How many times do we start to
evaluate the loop?

Number of loop executions: y

y [y/size(y)]y + 4 · x3 + 2 · x41 · (y + 4 · x3 + 2 · x4)

16 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Time Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

L1;
L2;
// y has size y + 4 · x3 + 2 · x4
while (y > 0) do[

y
]
←

[
y− 1

]
end

▶ How often do we execute the loop?
▶ Idea: Analyze different subprograms
and combine results
• loop is “locally” executed y times

▶ Respect size of variables:
• y is size bounded by y + 4 · x3 + 2 · x4

▶ How many times do we start to
evaluate the loop?

Number of loop executions: y

y [y/size(y)]y + 4 · x3 + 2 · x41 · (y + 4 · x3 + 2 · x4)

16 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Time Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

L1;
L2;
// y has size y + 4 · x3 + 2 · x4
while (y > 0) do[

y
]
←

[
y− 1

]
end

▶ How often do we execute the loop?
▶ Idea: Analyze different subprograms
and combine results
• loop is “locally” executed y times

▶ Respect size of variables:
• y is size bounded by y + 4 · x3 + 2 · x4

▶ How many times do we start to
evaluate the loop?

Number of loop executions:

y

y [y/size(y)]

y + 4 · x3 + 2 · x41 · (y + 4 · x3 + 2 · x4)

16 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Time Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

L1;
L2;
// y has size y + 4 · x3 + 2 · x4
while (y > 0) do[

y
]
←

[
y− 1

]
end

▶ How often do we execute the loop?
▶ Idea: Analyze different subprograms
and combine results
• loop is “locally” executed y times

▶ Respect size of variables:
• y is size bounded by y + 4 · x3 + 2 · x4

▶ How many times do we start to
evaluate the loop?

Number of loop executions:

yy [y/size(y)]

y + 4 · x3 + 2 · x4

1 · (y + 4 · x3 + 2 · x4)

16 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Time Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

L1;
L2;
// y has size y + 4 · x3 + 2 · x4
while (y > 0) do[

y
]
←

[
y− 1

]
end

▶ How often do we execute the loop?
▶ Idea: Analyze different subprograms
and combine results
• loop is “locally” executed y times

▶ Respect size of variables:
• y is size bounded by y + 4 · x3 + 2 · x4

▶ How many times do we start to
evaluate the loop?

Number of loop executions:

yy [y/size(y)]

y + 4 · x3 + 2 · x4

1 · (y + 4 · x3 + 2 · x4)

16 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Time Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

L1;
L2;
// y has size y + 4 · x3 + 2 · x4
while (y > 0) do[

y
]
←

[
y− 1

]
end

▶ How often do we execute the loop?
▶ Idea: Analyze different subprograms
and combine results
• loop is “locally” executed y times

▶ Respect size of variables:
• y is size bounded by y + 4 · x3 + 2 · x4

▶ How many times do we start to
evaluate the loop?

Number of loop executions:

yy [y/size(y)]y + 4 · x3 + 2 · x4

1 · (y + 4 · x3 + 2 · x4)

16 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Time Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

L1;
L2;
// y has size y + 4 · x3 + 2 · x4
while (y > 0) do[

y
]
←

[
y− 1

]
end

▶ How often do we execute the loop?
▶ Idea: Analyze different subprograms
and combine results
• loop is “locally” executed y times

▶ Respect size of variables:
• y is size bounded by y + 4 · x3 + 2 · x4

▶ How many times do we start to
evaluate the loop?

Number of loop executions:

yy [y/size(y)]

y + 4 · x3 + 2 · x4

1 · (y + 4 · x3 + 2 · x4)

16 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

prs loops

size bounds time bounds
completeness completeness

simple integer programs

size bounds time bounds
completeness completeness

Lifting

17 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

prs loops

size bounds time bounds
completeness completeness

simple integer programs

size bounds time bounds
completeness completeness

Lifting

17 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: Simple Integer Programs

▶ Simple Integer Program:

• No nested loops
▶ Solve loops in topological order:

• Infer time bound by considering previous size
bounds.

• Compute size bounds for loops.
• Propagate size bounds to subsequent loops.

L1 L2

L3

L4

▶ Polynomial size and time bounds are computable if all loops are
terminating unit prs loops.

18 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: Simple Integer Programs

▶ Simple Integer Program:
• No nested loops

▶ Solve loops in topological order:

• Infer time bound by considering previous size
bounds.

• Compute size bounds for loops.
• Propagate size bounds to subsequent loops.

L1 L2

L3

L4

▶ Polynomial size and time bounds are computable if all loops are
terminating unit prs loops.

18 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: Simple Integer Programs

▶ Simple Integer Program:
• No nested loops

▶ Solve loops in topological order:

• Infer time bound by considering previous size
bounds.

• Compute size bounds for loops.
• Propagate size bounds to subsequent loops.

L1 L2

L3

L4

▶ Polynomial size and time bounds are computable if all loops are
terminating unit prs loops.

18 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: Simple Integer Programs

▶ Simple Integer Program:
• No nested loops

▶ Solve loops in topological order:

• Infer time bound by considering previous size
bounds.

• Compute size bounds for loops.
• Propagate size bounds to subsequent loops.

L1 L2

L3

L4

▶ Polynomial size and time bounds are computable if all loops are
terminating unit prs loops.

18 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: Simple Integer Programs

▶ Simple Integer Program:
• No nested loops

▶ Solve loops in topological order:

• Infer time bound by considering previous size
bounds.

• Compute size bounds for loops.
• Propagate size bounds to subsequent loops.

L1 L2

L3

L4

▶ Polynomial size and time bounds are computable if all loops are
terminating unit prs loops.

18 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: Simple Integer Programs

▶ Simple Integer Program:
• No nested loops

▶ Solve loops in topological order:
• Infer time bound by considering previous size
bounds.

• Compute size bounds for loops.
• Propagate size bounds to subsequent loops.

L1 L2

L3

L4

▶ Polynomial size and time bounds are computable if all loops are
terminating unit prs loops.

18 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: Simple Integer Programs

▶ Simple Integer Program:
• No nested loops

▶ Solve loops in topological order:
• Infer time bound by considering previous size
bounds.

• Compute size bounds for loops.

• Propagate size bounds to subsequent loops.

L1 L2

L3

L4

▶ Polynomial size and time bounds are computable if all loops are
terminating unit prs loops.

18 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: Simple Integer Programs

▶ Simple Integer Program:
• No nested loops

▶ Solve loops in topological order:
• Infer time bound by considering previous size
bounds.

• Compute size bounds for loops.
• Propagate size bounds to subsequent loops.

L1 L2

L3

L4

▶ Polynomial size and time bounds are computable if all loops are
terminating unit prs loops.

18 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: Simple Integer Programs

▶ Simple Integer Program:
• No nested loops

▶ Solve loops in topological order:
• Infer time bound by considering previous size
bounds.

• Compute size bounds for loops.
• Propagate size bounds to subsequent loops.

L1 L2

L3

L4

▶ Polynomial size and time bounds are computable if all loops are
terminating unit prs loops.

18 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: Simple Integer Programs

▶ Simple Integer Program:
• No nested loops

▶ Solve loops in topological order:
• Infer time bound by considering previous size
bounds.

• Compute size bounds for loops.
• Propagate size bounds to subsequent loops.

L1 L2

L3

L4

▶ Polynomial size and time bounds are computable if all loops are
terminating unit prs loops.

18 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: Simple Integer Programs

▶ Simple Integer Program:
• No nested loops

▶ Solve loops in topological order:
• Infer time bound by considering previous size
bounds.

• Compute size bounds for loops.
• Propagate size bounds to subsequent loops.

L1 L2

L3

L4

▶ Polynomial size and time bounds are computable if all loops are
terminating unit prs loops.

18 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: Simple Integer Programs

▶ Simple Integer Program:
• No nested loops

▶ Solve loops in topological order:
• Infer time bound by considering previous size
bounds.

• Compute size bounds for loops.
• Propagate size bounds to subsequent loops.

L1 L2

L3

L4

▶ Polynomial size and time bounds are computable if all loops are
terminating unit prs loops.

18 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: Simple Integer Programs

▶ Simple Integer Program:
• No nested loops

▶ Solve loops in topological order:
• Infer time bound by considering previous size
bounds.

• Compute size bounds for loops.
• Propagate size bounds to subsequent loops.

L1 L2

L3

L4

▶ Polynomial size and time bounds are computable if all loops are
terminating unit prs loops.

18 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: Simple Integer Programs

▶ Simple Integer Program:
• No nested loops

▶ Solve loops in topological order:
• Infer time bound by considering previous size
bounds.

• Compute size bounds for loops.
• Propagate size bounds to subsequent loops.

L1 L2

L3

L4

▶ Polynomial size and time bounds are computable if all loops are
terminating unit prs loops.

18 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: Simple Integer Programs

▶ Simple Integer Program:
• No nested loops

▶ Solve loops in topological order:
• Infer time bound by considering previous size
bounds.

• Compute size bounds for loops.
• Propagate size bounds to subsequent loops.

L1 L2

L3

L4

▶ Polynomial size and time bounds are computable if all loops are
terminating unit prs loops.

18 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: Simple Integer Programs

▶ Simple Integer Program:
• No nested loops

▶ Solve loops in topological order:
• Infer time bound by considering previous size
bounds.

• Compute size bounds for loops.
• Propagate size bounds to subsequent loops.

L1 L2

L3

L4

▶ Polynomial size and time bounds are computable if all loops are
terminating unit prs loops.

18 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Completeness: Simple Integer Programs

▶ Simple Integer Program:
• No nested loops

▶ Solve loops in topological order:
• Infer time bound by considering previous size
bounds.

• Compute size bounds for loops.
• Propagate size bounds to subsequent loops.

L1 L2

L3

L4

▶ Polynomial size and time bounds are computable if all loops are
terminating unit prs loops.

18 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

prs loops

size bounds time bounds
completeness completeness

simple integer programs

size bounds time bounds
completeness completeness

Lifting

accumulated
size bounds
[TOPLAS ’16]

ranking
functions
[RH ’22]

19 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

prs loops

size bounds time bounds
completeness completeness

simple integer programs

size bounds time bounds
completeness completeness

Lifting

accumulated
size bounds
[TOPLAS ’16]

ranking
functions
[RH ’22]

19 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

prs loops

size bounds time bounds
completeness completeness

simple integer programs

size bounds time bounds
completeness completeness

Lifting

accumulated
size bounds
[TOPLAS ’16]

ranking
functions
[RH ’22]

19 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

prs loops

size bounds time bounds
completeness completeness

simple integer programs

size bounds time bounds
completeness completeness

Lifting

accumulated
size bounds
[TOPLAS ’16]

ranking
functions
[RH ’22]

19 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Evaluation of our Implementation in KoAT2

▶ C_Complexity consisting of 519 (mainly linear) benchmarks from TPDB
O(1) O(n) O(n2) O(n>2) O(EXP) <∞ AVG(s)

Loopus 17 171 50 6 0 244 0.40
KoAT1 25 170 74 12 8 289 0.96
CoFloCo 22 197 66 5 0 290 0.59
MaxCore 23 220 67 7 0 317 1.96

KoAT2 26 232 70 15 5 348 8.29
KoAT2 + SIZE 26 233 71 25 3 358 9.97

succ. rate
62%
74%
75%
80%
85%
89%

▶ KoAT1: original KoAT implementation [TOPLAS’ 16]

▶ KoAT2: reimplementation of KoAT1 [RH ’22] + [IJCAR ’22]
▶ At most 386 benchmarks might terminate
▶ KoAT2 + SIZE solves 89% of benchmarks which might terminate.

20 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Evaluation of our Implementation in KoAT2

▶ C_Complexity consisting of 519 (mainly linear) benchmarks from TPDB
O(1) O(n) O(n2) O(n>2) O(EXP) <∞ AVG(s)

Loopus 17 171 50 6 0 244 0.40
KoAT1 25 170 74 12 8 289 0.96
CoFloCo 22 197 66 5 0 290 0.59
MaxCore 23 220 67 7 0 317 1.96
KoAT2 26 232 70 15 5 348 8.29

KoAT2 + SIZE 26 233 71 25 3 358 9.97

succ. rate
62%
74%
75%
80%
85%
89%

▶ KoAT1: original KoAT implementation [TOPLAS’ 16]
▶ KoAT2: reimplementation of KoAT1 [RH ’22] + [IJCAR ’22]

▶ At most 386 benchmarks might terminate
▶ KoAT2 + SIZE solves 89% of benchmarks which might terminate.

20 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Evaluation of our Implementation in KoAT2

▶ C_Complexity consisting of 519 (mainly linear) benchmarks from TPDB
O(1) O(n) O(n2) O(n>2) O(EXP) <∞ AVG(s)

Loopus 17 171 50 6 0 244 0.40
KoAT1 25 170 74 12 8 289 0.96
CoFloCo 22 197 66 5 0 290 0.59
MaxCore 23 220 67 7 0 317 1.96
KoAT2 26 232 70 15 5 348 8.29
KoAT2 + SIZE 26 233 71 25 3 358 9.97

succ. rate
62%
74%
75%
80%
85%
89%

▶ KoAT1: original KoAT implementation [TOPLAS’ 16]
▶ KoAT2: reimplementation of KoAT1 [RH ’22] + [IJCAR ’22]

▶ At most 386 benchmarks might terminate
▶ KoAT2 + SIZE solves 89% of benchmarks which might terminate.

20 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Evaluation of our Implementation in KoAT2

▶ C_Complexity consisting of 519 (mainly linear) benchmarks from TPDB
O(1) O(n) O(n2) O(n>2) O(EXP) <∞ AVG(s)

Loopus 17 171 50 6 0 244 0.40
KoAT1 25 170 74 12 8 289 0.96
CoFloCo 22 197 66 5 0 290 0.59
MaxCore 23 220 67 7 0 317 1.96
KoAT2 26 232 70 15 5 348 8.29
KoAT2 + SIZE 26 233 71 25 3 358 9.97

succ. rate
62%
74%
75%
80%
85%
89%

▶ KoAT1: original KoAT implementation [TOPLAS’ 16]
▶ KoAT2: reimplementation of KoAT1 [RH ’22] + [IJCAR ’22]
▶ At most 386 benchmarks might terminate

▶ KoAT2 + SIZE solves 89% of benchmarks which might terminate.

20 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Evaluation of our Implementation in KoAT2

▶ C_Complexity consisting of 519 (mainly linear) benchmarks from TPDB
O(1) O(n) O(n2) O(n>2) O(EXP) <∞ AVG(s)

Loopus 17 171 50 6 0 244 0.40
KoAT1 25 170 74 12 8 289 0.96
CoFloCo 22 197 66 5 0 290 0.59
MaxCore 23 220 67 7 0 317 1.96
KoAT2 26 232 70 15 5 348 8.29
KoAT2 + SIZE 26 233 71 25 3 358 9.97

succ. rate
62%
74%
75%
80%
85%
89%

▶ KoAT1: original KoAT implementation [TOPLAS’ 16]
▶ KoAT2: reimplementation of KoAT1 [RH ’22] + [IJCAR ’22]
▶ At most 386 benchmarks might terminate

▶ KoAT2 + SIZE solves 89% of benchmarks which might terminate.

20 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Evaluation of our Implementation in KoAT2

▶ C_Complexity consisting of 519 (mainly linear) benchmarks from TPDB
O(1) O(n) O(n2) O(n>2) O(EXP) <∞ AVG(s)

Loopus 17 171 50 6 0 244 0.40
KoAT1 25 170 74 12 8 289 0.96
CoFloCo 22 197 66 5 0 290 0.59
MaxCore 23 220 67 7 0 317 1.96
KoAT2 26 232 70 15 5 348 8.29
KoAT2 + SIZE 26 233 71 25 3 358 9.97

succ. rate
62%
74%
75%
80%
85%
89%

▶ KoAT1: original KoAT implementation [TOPLAS’ 16]
▶ KoAT2: reimplementation of KoAT1 [RH ’22] + [IJCAR ’22]
▶ At most 386 benchmarks might terminate
▶ KoAT2 + SIZE solves 89% of benchmarks which might terminate.

20 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

Conclusion

▶ Conclusion

• Introduced modular approach for complexity analysis combining

– Procedure to infer size bounds by closed
forms

– time bound computations

• Handle loops with non-linear arithmetic
• Complete for a large class of integer programs
• KoAT2 outperforms other state-of-the-art tools

https://koat.verify.rwth-aachen.de/size

Thank You!

21 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://koat.verify.rwth-aachen.de/size

Conclusion

▶ Conclusion
• Introduced modular approach for complexity analysis combining

– Procedure to infer size bounds by closed
forms

– time bound computations

• Handle loops with non-linear arithmetic
• Complete for a large class of integer programs
• KoAT2 outperforms other state-of-the-art tools

https://koat.verify.rwth-aachen.de/size

Thank You!

21 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://koat.verify.rwth-aachen.de/size

Conclusion

▶ Conclusion
• Introduced modular approach for complexity analysis combining

– Procedure to infer size bounds by closed
forms

– time bound computations

• Handle loops with non-linear arithmetic
• Complete for a large class of integer programs
• KoAT2 outperforms other state-of-the-art tools

https://koat.verify.rwth-aachen.de/size

Thank You!

21 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://koat.verify.rwth-aachen.de/size

Conclusion

▶ Conclusion
• Introduced modular approach for complexity analysis combining

– Procedure to infer size bounds by closed
forms

– time bound computations

• Handle loops with non-linear arithmetic
• Complete for a large class of integer programs
• KoAT2 outperforms other state-of-the-art tools

https://koat.verify.rwth-aachen.de/size

Thank You!

21 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://koat.verify.rwth-aachen.de/size

Conclusion

▶ Conclusion
• Introduced modular approach for complexity analysis combining

– Procedure to infer size bounds by closed
forms

– time bound computations

• Handle loops with non-linear arithmetic

• Complete for a large class of integer programs
• KoAT2 outperforms other state-of-the-art tools

https://koat.verify.rwth-aachen.de/size

Thank You!

21 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://koat.verify.rwth-aachen.de/size

Conclusion

▶ Conclusion
• Introduced modular approach for complexity analysis combining

– Procedure to infer size bounds by closed
forms

– time bound computations

• Handle loops with non-linear arithmetic
• Complete for a large class of integer programs

• KoAT2 outperforms other state-of-the-art tools

https://koat.verify.rwth-aachen.de/size

Thank You!

21 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://koat.verify.rwth-aachen.de/size

Conclusion

▶ Conclusion
• Introduced modular approach for complexity analysis combining

– Procedure to infer size bounds by closed
forms

– time bound computations

• Handle loops with non-linear arithmetic
• Complete for a large class of integer programs
• KoAT2 outperforms other state-of-the-art tools

https://koat.verify.rwth-aachen.de/size

Thank You!

21 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://koat.verify.rwth-aachen.de/size

Conclusion

▶ Conclusion
• Introduced modular approach for complexity analysis combining

– Procedure to infer size bounds by closed
forms

– time bound computations

• Handle loops with non-linear arithmetic
• Complete for a large class of integer programs
• KoAT2 outperforms other state-of-the-art tools

https://koat.verify.rwth-aachen.de/size

Thank You!

21 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://koat.verify.rwth-aachen.de/size

Conclusion

▶ Conclusion
• Introduced modular approach for complexity analysis combining

– Procedure to infer size bounds by closed
forms

– time bound computations

• Handle loops with non-linear arithmetic
• Complete for a large class of integer programs
• KoAT2 outperforms other state-of-the-art tools

https://koat.verify.rwth-aachen.de/size

Thank You!

21 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://koat.verify.rwth-aachen.de/size

Conclusion

▶ Conclusion
• Introduced modular approach for complexity analysis combining

– Procedure to infer size bounds by closed
forms

– time bound computations

• Handle loops with non-linear arithmetic
• Complete for a large class of integer programs
• KoAT2 outperforms other state-of-the-art tools

https://koat.verify.rwth-aachen.de/size

Thank You!

21 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://koat.verify.rwth-aachen.de/size

