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Motivation

Goal: Infer (upper) size and time bounds for “real-world” programs
while (x1 > 0) do

X1 - X1—1
X9 XQ‘FX%

end
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o)

X Xg + X3

end

while (x, > 0) do
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end
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Motivation

Goal: Infer (upper) size and time bounds for “real-world” programs

while (x4 > 0) do

o)

X Xg + X3

end

while (x, > 0) do
%]  [ro— 1

end

» How large are the variables?
» How often do we execute the second loop?
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Motivation

Goal: Infer (upper) size and time bounds for “real-world” programs

while (x4 > 0) do

o)

X Xg + X3

end

while (x, > 0) do
xo] = [x2 — 1]

end

» How large are the variables?

» How often do we execute the second loop?
 Maximal “size” of x, times
« Existing tools usually fail with non-linear
arithmetic.
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Motivation

Goal: Infer (upper) size and time bounds for “real-world” programs

while (xy > 0) do » How large are the variables?
X4 X, — 1 » How often do we execute the second loop?
[XJ [X2 + X%] * Maximal "size” of x, times |

« Existing tools usually fail with non-linear

end arithmetic.

while (x> 0) do « Can compute non-linear size and time bounds for
[%5] + [x0 — 1] prs loops.

end
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Motivation

Goal: Infer (upper) size and time bounds for “real-world” programs

while (x4 > 0) do

end
while (x, > 0) do

%2] = [x2 = 1]
end

» How large are the variables?

» How often do we execute the second loop?

 Maximal “size” of x, times

« Existing tools usually fail with non-linear
arithmetic.

« Can compute non-linear size and time bounds for
prs loops.

» Approach is complete for a large class of
programs.
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Motivation

Goal: Infer (upper) size and time bounds for “real-world” programs

while (xy > 0) do » How large are the variables?

[X1] [X - 1] » How often do we execute the second loop?

 Maximal “size” of x, times

X5 + X3 s o .
« Existing tools usually fail with non-linear

X2

end

arithmetic.
while (x3 > 0) do - Can compute non-linear size and time bounds for
[Xz] . [x2 _ 1} prs loops.
ond » Approach is complete for a large class of
programs.

» Size bound computations are implemented in the automatic complexity
analysis tool KoAT
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Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

4 | )
oops
size bounds
\_ /
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Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x; and x,
while (x; > 0) do

X1 - X1—1
X9 X2+X§

end
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Size Bounds by Closed Forms
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Size Bounds by Closed Forms
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while (x; > 0) do » Compute closed form for x;.
Xy X1 — 1
%
R e
end
» Closed form: cl? =z —n
4 of 21 FroCoS '23

Nils Lommen and Jirgen Giesl
RWTH Aachen University — LUFGi2



Size Bounds by Closed Forms
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Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x; and x,

while (x; > 0) do

X1 “ X1—1
X9 X2+Xf

end

» Closed form:

» Over-approximation:

» Compute closed form for x;.

» Over-approximate closed form to

x1

expression.
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Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x; and x,

while (x; > 0) do » Compute closed form for x;.
X4 x; — 1 » Over-approximate closed form to non-negative,
[XJ [X2 4 Xg] weakly monotonic increasing expression.
end » Replace n by an over-approximation of the
runtime.
» Closed form: cly, =x1—n
» Over-approximation: T, +n

» Size bound:

4 of 21 FroCoS '23
Nils Lommen and Jirgen Giesl
RWTH Aachen University — LUFGi2



Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x; and x,

while (x; > 0) do » Compute closed form for x;.
X4 x; — 1 » Over-approximate closed form to non-negative,
[XJ [X2 4 Xg] weakly monotonic increasing expression.
end » Replace n by an over-approximation of the
runtime.
» Closed form: cly, =x1—n
» Over-approximation: T, +n

» Size bound: r1+ 1

4 of 21 FroCoS '23
Nils Lommen and Jirgen Giesl
RWTH Aachen University — LUFGi2



Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x; and x,

while (x; > 0) do » Compute closed form for x;.
X4 x; — 1 » Over-approximate closed form to non-negative,
[XJ [X2 4 Xg] weakly monotonic increasing expression.
end » Replace n by an over-approximation of the
runtime.
» Closed form: cly, =x1—n
» Over-approximation: T, +n

» Size bound: r1+x1 =2 21

4 of 21 FroCoS '23
Nils Lommen and Jirgen Giesl
RWTH Aachen University — LUFGi2



Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x; and x,

while (x; > 0) do » Compute closed form for x;.
X4 x; — 1 » Over-approximate closed form to non-negative,
[XJ [X2 4 Xf] weakly monotonic increasing expression.
end » Replace n by an over-approximation of the
runtime.
» Closed form: cly, =x1—n
» Over-approximation: x1+n
» Size bound: r1+x1 =2 21
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Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x; and x,

while (x; > 0) do » Compute closed form for x;.
X4 x; — 1 » Over-approximate closed form to non-negative,
[XJ [X2 4 Xf] weakly monotonic increasing expression.
end » Replace n by an over-approximation of the
runtime.
» Closed form: cly, =x1—n
» Over-approximation: x1+n
» Size bound: r1+x1 =2 21

= for an initial configuration 1 = —5: 2-| — 5| = 10
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Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x; and x,

while (x; > 0) do

X1 “ X1—1
X9 X2+Xf

end

» Compute closed form for x,.

» Over-approximate closed form to non-negative,
weakly monotonic increasing expression.

» Replace n by an over-approximation of the
runtime.
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Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x; and x,

while (x; > 0) do

X1 “ X1—1
X9 X2+Xf

end

» Closed form:

» Compute closed form for x,.

» Over-approximate closed form to non-negative,
weakly monotonic increasing expression.

» Replace n by an over-approximation of the
runtime.

n o __ 1 2 n n?
cl), =x+n-(gt+xi+af—x1-n—5+%)
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Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x; and x,

while (x; > 0) do
<
X2

end

» Closed form:
» Over-approximation:

» Compute closed form for x,.

» Over-approximate closed form to
expression.

» Replace n by an over-approximation of the

runtime.

cl? =mzo+n-(;+z + ]
QZQ‘F?%'(%—FZIH—FQZ%
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Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x; and x,

while (x; > 0) do

X1 “ X1—1
X9 X2+Xf

end

» Closed form:

» Over-approximation:

» Size bound:

» Compute closed form for x,.

» Over-approximate closed form to non-negative,
weakly monotonic increasing expression.

» Replace n by an over-approximation of the
runtime.

— 2
C122—372+n-(%+x1+x%—xl-n—ng—?’é)
T 1 2 n , n?

L2 n'(6+$1+x1+x1-n+2+—3)

) 2
Tota-(F+azi+ad+a o+ 5+ 5
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Periodic Rational Solvable Loops

» 7 built from A, Vv, (—, ...) and

while (7) do polynomial inequations over Z
end
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Periodic Rational Solvable Loops

while (7) do

» 7 built from A, Vv, (—, ...) and
polynomial inequations over Z

S1 S1 » Partition variables into blocks:
A : S1¥--- WSy
| Sa. | Su
end
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Periodic Rational Solvable Loops

» 7 built from A, Vv, (—, ...) and

while (7) do polynomial inequations over Z
(S| [A4, o oS » Partition variables into blocks:
=10 .0 : S-Sy
S, 0 0 Ail|S, » A, € 7I5IxIS1 integer matrix
end_ ) ) -
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Closed Forms: PRS Loops

» Closed forms are computable for all prs loops.
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Closed Forms: PRS Loops

» Closed forms are computable for all prs loops.
* poly-exponential expressions:
Soiap- b with o € Q... zg), . eNand b € Q
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Closed Forms: PRS Loops

» Closed forms are computable for all prs loops.
* poly-exponential expressions:
0" with o) € Qlzy, ..

while

Zj Qj

(Xl > 0) do

(10 0 0
0

01 0
“loo 3 2
00

—5 -3

'7$d],

cNandb, €Q
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» Closed forms are computable for all prs loops.
* poly-exponential expressions:

Soiap- b with o € Q... zg), . eNand b € Q
while (x; > 0) do » closed form for xs:
2
x| [to0 o o][x:] [~1] Tytn- (ot el —wn—547)
Xo |, 01 0 0 [|x N X2 » closed form for xs:
X3 00 3 2 ||xs 0 Loa-(—1)"+1-a-1"foralinear
x| |00 =5 —3||xa] [ O polynomial .
end

» How to handle algebraic Q \ Q numbers?
» When do we have polynomial size bounds?
* When are (polynomial) time bounds computable?

7 of 21 FroCoS '23
Nils Lommen and Jirgen Giesl
RWTH Aachen University — LUFGi2



Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x5

while (x; > 0) do » Compute closed form for xs.
X1 xy — 1 » Over-approximate closed form to non-negative,
X3| ¢ | 3Xx3+2x4 weakly monotonic increasing expression.
X4 —5x3 — 3x4| » Replace n by an over-approximation of the

end runtime.
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Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x5

while (x; > 0) do » Compute closed form for xs.
X1 x; — 1 » Over-approximate closed form to non-negative,
X3| ¢ | 3Xx3+2x4 weakly monotonic increasing expression.
X4 —5x3 — 3x4| » Replace n by an over-approximation of the
end runtime.
» Closed form: cl! =3-a-(—)"+i-a-i"
. . . 1 . 1 J— <N
» Over-approximation: 5 lal- (| =1)"+5-|a]-|i|" = |af
» Size bound: ol =4 -23+2- 24

» How to handle algebraic Q \ Q numbers? Take absolute value!

» When do we have polynomial size bounds?

* All eigenvalues )\ are unit: |\ <1
* When are (polynomial) time bounds computable?
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Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

4 )

prs loops

size bounds <«— time bound

completeness completeness

\_ _/

Lifting

simple integer programs

size bounds ——» time bounds

completeness completeness

\_ _/
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Periodic Rational Solvable Loops

» 7 built from A, Vv, (—, ...) and

while (7) do polynomial inequations over Z
(S| [A4, o ol [Si] [] » Partition variables into blocks:
=10 .0 SIS S-S,
S.| |0 0 Aq| |8 | » A, € 7I5IxIS1 integer matrix
end

> € Z|U,-, S;]'°! polynomials

» Variable value depends at most linearly on its previous value.
- Prevent super-exponential growth: x « x? (so the value is z(*"))

> dependencies only of variables from blocks with lower indices
[ recurrence to obtain closed form.
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Completeness: PRS Loops

» (Polynomial) time bounds are computable for all terminating prs loops.
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Completeness: PRS Loops

» (Polynomial) time bounds are computable for all terminating prs loops.
« chain (unroll) loops accordingly to their period ~~ integer eigenvalues

while (x4 > 0) do » 1 has period 1
%] [10 o o]1[xi] [-1] »ihasperiod2asi’=-1¢€Q
X |01 0 0 |[xy] |x2 » —ihas period2as(—i)* = —-1€Q
“loo 3 2 T i
X3 X3 0 = chain loop once
_X4_ _O 0 —5 —3_ _X4_ | 0 |
end » Prove termination for
. chained loops [SAS "20]
wh1_1e_(x1_> 0) do L ) * co-NP-complete for
X4 10 0 0 ||x4 —2 linear arithmetic
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» (Polynomial) time bounds are computable for all terminating prs loops.
« chain (unroll) loops accordingly to their period ~~ integer eigenvalues

while (x4 > 0) do » 1 has period 1
%] 10 o o1[xi] [-1] »ihasperiod2asi’=-1€Q
X |01 0 0 |[xy] |x2 » —ihas period2as(—i)* = —-1€Q
“loo 3 2 T i
X3 X3 0 = chain loop once
_X4_ _O 0 —5 —3_ _X4_ | 0 |
end » Prove termination for
. chained loops [SAS "20]
wh1_1e_(x1_> 0) do L ) * co-NP-complete for
X4 10 0 0 ||x4 —2 linear arithmetic
o, [01 0 O [|xo], |%x]+(x1—1)*| » Find time bounds for
% O O _1 O —l_ . . .
X3 X3 0 terminating chained
xq] |00 O —1]|xq | 0 ] loops [LPAR '20]
end » Derive time bound for

original loops
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Completeness: PRS Loops

» Closed forms are computable for all prs loops.
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Completeness: PRS Loops

» Closed forms are computable for all prs loops.

» Polynomial time bounds are computable for all terminating prs loops.
[LPAR °20]

» Size bounds are computable for all terminating prs loops.

» Polynomial size bounds are computable for all unit prs loops.
- unit: for all eigenvalues A € Q we have |\| < 1

while (x; > 0) do

X1 (10 0 O |[x4] [—1
Xo 01 0 0 |[[xo] |x2
x| lo0 3 2 ||xs|T] 0
_X4_ _O O —5 —3_ _X4_ i O |
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Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

4 )

prs loops

size bounds <«—— time bounds

completeness completeness

\_ _/

Lifting

simple integer programs

size bounds ——» time bounds

completeness completeness

\_ _/
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Size Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

while (x4 > 0) do

Xq X1 — 1
X3 | 3x3 + 2%y
X4 —5X3 + —3X4
end
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Size Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs
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Size Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

» Size of y after second loop:

while (x; > 0) do .
» |ldea: Analyze different subprograms

X4 Xy —1 and combine results
X3 | < * y “locally” has size y + x3
X i I
; 4 » Respect size of variables:
en

* x3 IS size bounded by
while (x3 > 0) do

e b

end
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Time Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs
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Ly;
Lo;
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Time Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

Ly;
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//'y has sizey+4-x3+2- 24

while (y > 0) do
y] < [y —1]

end
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Time Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

Li; » How often do we execute the loop?

Lo;
//'y has sizey+4-x3+2- 24
while (y > 0) do

y] =y -1

end
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Time Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

Li; » How often do we execute the loop?

Lo; » |dea: Analyze different subprograms
// v has sizey+4- x5+ 2 x4 and combine results
while (y > 0) do

y] « [y -1

end

16 of 21 FroCoS '23
Nils Lommen and Jirgen Giesl
RWTH Aachen University — LUFGi2



Time Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs
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end
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» ldea: Analyze different subprograms
and combine results
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Time Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

» How often do we execute the loop?

» ldea: Analyze different subprograms
and combine results

* loop is “locally” executed y times
while (y > 0) do
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end

Number of loop executions: y
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Time Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

Li; » How often do we execute the loop?
LQ,- » |dea: Analyze different subprograms
’ and combine results
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Time Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

Li; » How often do we execute the loop?
LQ,- » |dea: Analyze different subprograms
’ and combine results

// y has sizey+4-x3+2- x4 _ _
* loop is “locally” executed y times
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Goal: Infer size and time bounds for “real-world“ programs

Li; » How often do we execute the loop?
LQ,- » |dea: Analyze different subprograms
’ and combine results

// y has sizey+4-x3+2- x4 _ _
* loop is “locally” executed y times

while (y > 0) do » Respect size of variables:
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Time Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

Li; » How often do we execute the loop?
LQ,- » |dea: Analyze different subprograms
’ and combine results

// y has sizey+4-x3+2- x4 _ _
* loop is “locally” executed y times

while (y > 0) do » Respect size of variables:
[Y]F[Y—l] * y is size bounded by y +4 - 23+ 224
end » How many times do we start to

evaluate the loop?

Number of loop executions: 1-(y+4-x3+2- x4)
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Time Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs
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Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

4 )

prs loops

size bounds <«—— time bounds

completeness completeness

\_ _/

Lifting

simple integer programs

size bounds ——» time bounds

completeness completeness

\_ _/
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Completeness: Simple Integer Programs

» Simple Integer Program:
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Completeness: Simple Integer Programs

» Simple Integer Program:
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» Solve loops in topological order:
* Infer time bound by considering previous size

bounds. Ll /.\ L2
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Completeness: Simple Integer Programs

» Simple Integer Program:
* No nested loops
» Solve loops in topological order:
* Infer time bound by considering previous size

bounds. I /.\ I
. 1 2
« Compute size bounds for loops.
* Propagate size bounds to subsequent loops.
L3 C‘\
oL

» Polynomial size and time bounds are computable if all loops are
terminating unit prs loops.
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Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

4 )

prs loops

size bounds <«—— time bounds

completeness completeness

\_ _/

Lifting

simple integer programs

size bounds —— time bounds

completeness completeness

\_ _/
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Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

4 )

prs loops

size bounds <«—— time bounds

completeness completeness

\_ _/

Lifting

4 )

accumulated

[TOPLAS ’16] completeness completeness
_/ /
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Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

4 )

accumulated
size bounds

-

\

prs loops

size bounds <«—— time bounds

[TOPLAS *16]

\_

completeness completeness

_/

Lifting

\_

simple integer programs

size bounds —» time bounds

completeness completeness

2

ranking
functions

[RH '22]
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Evaluation of our Implementation in KoAT2

» C_Complexity consisting of 519 (mainly linear) benchmarks from TPDB

O(1)|O(n) | On*) | O(n~?) |O(EXP)| < oo | AVG(s)
Loopus 17 | 171 | 50 6 0 244 | 0.40
KoAT1 25 | 170 | 74 12 8 289 | 0.96
CoFloCo 22 | 197 | 66 5 0 290 | 0.59
MaxCore 23 | 220 | 67 7 0 317 | 1.96

» KoAT1: original KoAT implementation [TOPLAS’ 16]
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Evaluation of our Implementation in KoAT2

» C_Complexity consisting of 519 (mainly linear) benchmarks from TPDB

O(1)|O(n) | On*) | O(n~?) |O(EXP)| < oo | AVG(s)
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» KoAT1: original KoAT implementation [TOPLAS’ 16]
» KoAT2: reimplementation of KoAT1 [RH '22] + [[JCAR "22]
» At most 386 benchmarks might terminate
» KoAT2 + SIZE solves 89% of benchmarks which might terminate.

20 of 21

FroCoS '23
Nils Lommen and Jirgen Giesl
RWTH Aachen University — LUFGi2



Conclusion

» Conclusion

21 of 21 FroCoS '23
Nils Lommen and Jirgen Giesl
RWTH Aachen University — LUFGi2


https://koat.verify.rwth-aachen.de/size

Conclusion

» Conclusion
* Introduced modular approach for complexity analysis combining

21 of 21 FroCoS '23
Nils Lommen and Jirgen Giesl
RWTH Aachen University — LUFGi2


https://koat.verify.rwth-aachen.de/size

Conclusion

» Conclusion
* Introduced modular approach for complexity analysis combining

— Procedure to infer size bounds by closed
forms

21 of 21 FroCoS '23
Nils Lommen and Jirgen Giesl
RWTH Aachen University — LUFGi2


https://koat.verify.rwth-aachen.de/size

Conclusion

» Conclusion
* Introduced modular approach for complexity analysis combining

— Procedure to infer size bounds by closed - time bound computations
forms

21 of 21 FroCoS '23
Nils Lommen and Jirgen Giesl
RWTH Aachen University — LUFGi2


https://koat.verify.rwth-aachen.de/size

Conclusion

» Conclusion
* Introduced modular approach for complexity analysis combining

— Procedure to infer size bounds by closed - time bound computations
forms

* Handle loops with non-linear arithmetic

21 of 21 FroCoS '23
Nils Lommen and Jirgen Giesl
RWTH Aachen University — LUFGi2


https://koat.verify.rwth-aachen.de/size

Conclusion

» Conclusion
* Introduced modular approach for complexity analysis combining

— Procedure to infer size bounds by closed - time bound computations
forms

* Handle loops with non-linear arithmetic
« Complete for a large class of integer programs

21 of 21 FroCoS '23
Nils Lommen and Jirgen Giesl
RWTH Aachen University — LUFGi2


https://koat.verify.rwth-aachen.de/size

Conclusion

» Conclusion
* Introduced modular approach for complexity analysis combining

— Procedure to infer size bounds by closed - time bound computations
forms

* Handle loops with non-linear arithmetic
« Complete for a large class of integer programs
* KoAT2 outperforms other state-of-the-art tools

21 of 21 FroCoS '23
Nils Lommen and Jirgen Giesl
RWTH Aachen University — LUFGi2


https://koat.verify.rwth-aachen.de/size

Conclusion

» Conclusion
* Introduced modular approach for complexity analysis combining

— Procedure to infer size bounds by closed - time bound computations
forms

* Handle loops with non-linear arithmetic
« Complete for a large class of integer programs
* KoAT2 outperforms other state-of-the-art tools

https://koat.verify.rwth-aachen.de/size

21 of 21 FroCoS '23
Nils Lommen and Jirgen Giesl
RWTH Aachen University — LUFGi2


https://koat.verify.rwth-aachen.de/size

Conclusion

» Conclusion
* Introduced modular approach for complexity analysis combining

— Procedure to infer size bounds by closed - time bound computations
forms

* Handle loops with non-linear arithmetic
« Complete for a large class of integer programs
* KoAT2 outperforms other state-of-the-art tools

https://koat.verify.rwth-aachen.de/size

Analysis of Integer Programs

21 of 21 FroCoS '23
Nils Lommen and Jirgen Giesl
RWTH Aachen University — LUFGi2


https://koat.verify.rwth-aachen.de/size

Conclusion

» Conclusion
* Introduced modular approach for complexity analysis combining

— Procedure to infer size bounds by closed - time bound computations
forms

* Handle loops with non-linear arithmetic
« Complete for a large class of integer programs
* KoAT2 outperforms other state-of-the-art tools

https://koat.verify.rwth-aachen.de/size
Thank You! oo

21 of 21 FroCoS '23
Nils Lommen and Jirgen Giesl
RWTH Aachen University — LUFGi2


https://koat.verify.rwth-aachen.de/size

