

Targeting Completeness: Using Closed Forms for Size Bounds of Integer Programs

14th International Symposium on Frontiers of Combining Systems
Nils Lommen and Jürgen Gies

Motivation

Goal: Infer (upper) size and time bounds for "real-world" programs

```
while ( }\mp@subsup{x}{1}{}>0\mathrm{ ) do
    [ [}\mp@subsup{\textrm{x}}{1}{
end
```


Motivation

Goal: Infer (upper) size and time bounds for "real-world" programs

$$
\begin{aligned}
& \text { while }\left(\mathrm{x}_{1}>0\right) \text { do } \\
& \qquad\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2}
\end{array}\right] \leftarrow\left[\begin{array}{l}
\mathrm{x}_{1}-1 \\
\mathrm{x}_{2}+\mathrm{x}_{1}^{2}
\end{array}\right] \\
& \text { end }
\end{aligned}
$$

Motivation

Goal: Infer (upper) size and time bounds for "real-world" programs

```
while (x
    [ [\begin{array}{l}{1}\\{\mp@subsup{\textrm{x}}{2}{}}\end{array}]\leftarrow[\begin{array}{c}{\mp@subsup{\textrm{x}}{1}{}-1}\\{\mp@subsup{\textrm{x}}{2}{}+\mp@subsup{\textrm{x}}{1}{2}}\end{array}]
end
while ( }\mp@subsup{x}{2}{}>0\mathrm{ ) do
    [\mp@subsup{\textrm{x}}{2}{}]\leftarrow[\mp@subsup{\textrm{x}}{2}{}-1]
end
```


Motivation

Goal: Infer (upper) size and time bounds for "real-world" programs

```
while (x
    [ [\begin{array}{l}{1}\\{\mp@subsup{\textrm{x}}{2}{}}\end{array}]\leftarrow[\begin{array}{c}{\mp@subsup{\textrm{x}}{1}{}-1}\\{\mp@subsup{\textrm{x}}{2}{}+\mp@subsup{\textrm{x}}{1}{2}}\end{array}]
end
while ( }\mp@subsup{x}{2}{}>0\mathrm{ ) do
    [\mp@subsup{\textrm{x}}{2}{}]\leftarrow[\mp@subsup{\textrm{x}}{2}{}-1]
end
```


Motivation

Goal: Infer (upper) size and time bounds for "real-world" programs

```
while (x
    [ [\begin{array}{l}{1}\\{\mp@subsup{\textrm{x}}{2}{}}\end{array}]\leftarrow[\begin{array}{c}{\mp@subsup{\textrm{x}}{1}{}-1}\\{\mp@subsup{\textrm{x}}{2}{}+\mp@subsup{\textrm{x}}{1}{2}}\end{array}]
end
while ( }\mp@subsup{x}{2}{}>0\mathrm{ ) do
    [\mp@subsup{\textrm{x}}{2}{}]\leftarrow[\mp@subsup{\textrm{x}}{2}{}-1]
end
```


Motivation

Goal: Infer (upper) size and time bounds for "real-world" programs

```
```

while (x

```
```

while (x
[$$
\begin{array}{l}{\mp@subsup{\textrm{x}}{1}{}}\\{\mp@subsup{\textrm{x}}{2}{}}\end{array}
$$]\leftarrow[$$
\begin{array}{c}{\mp@subsup{\textrm{x}}{1}{}-1}\\{\mp@subsup{\textrm{x}}{2}{}+\mp@subsup{\textrm{x}}{1}{2}}\end{array}
$$]
[$$
\begin{array}{l}{\mp@subsup{\textrm{x}}{1}{}}\\{\mp@subsup{\textrm{x}}{2}{}}\end{array}
$$]\leftarrow[$$
\begin{array}{c}{\mp@subsup{\textrm{x}}{1}{}-1}\\{\mp@subsup{\textrm{x}}{2}{}+\mp@subsup{\textrm{x}}{1}{2}}\end{array}
$$]
end
end
while (}\mp@subsup{x}{2}{}>0\mathrm{) do
while (}\mp@subsup{x}{2}{}>0\mathrm{) do
[\mp@subsup{\textrm{x}}{2}{}]\leftarrow[\mp@subsup{\textrm{x}}{2}{}-1]
[\mp@subsup{\textrm{x}}{2}{}]\leftarrow[\mp@subsup{\textrm{x}}{2}{}-1]
end

```
```

end

```
```


Motivation

Goal: Infer (upper) size and time bounds for "real-world" programs

```
```

while (x

```
```

while (x
[[$$
\begin{array}{l}{\mp@subsup{\textrm{x}}{1}{}}\\{\mp@subsup{\textrm{x}}{2}{}}\end{array}
$$]\leftarrow[$$
\begin{array}{c}{\mp@subsup{\textrm{x}}{1}{}-1}\\{\mp@subsup{\textrm{x}}{2}{}+\mp@subsup{\textrm{x}}{1}{2}}\end{array}
$$]
[[$$
\begin{array}{l}{\mp@subsup{\textrm{x}}{1}{}}\\{\mp@subsup{\textrm{x}}{2}{}}\end{array}
$$]\leftarrow[$$
\begin{array}{c}{\mp@subsup{\textrm{x}}{1}{}-1}\\{\mp@subsup{\textrm{x}}{2}{}+\mp@subsup{\textrm{x}}{1}{2}}\end{array}
$$]
end
end
while (}\mp@subsup{x}{2}{}>0\mathrm{) do
while (}\mp@subsup{x}{2}{}>0\mathrm{) do
[\mp@subsup{\textrm{x}}{2}{}]\leftarrow[\mp@subsup{\textrm{x}}{2}{}-1]
[\mp@subsup{\textrm{x}}{2}{}]\leftarrow[\mp@subsup{\textrm{x}}{2}{}-1]
end

```
```

end

```
```


Motivation

Goal: Infer (upper) size and time bounds for "real-world" programs

```
while (x
    [ [\begin{array}{l}{\mp@subsup{x}{1}{}}\\{\mp@subsup{\textrm{x}}{2}{}}\end{array}]\leftarrow[\begin{array}{c}{\mp@subsup{\textrm{x}}{1}{}-1}\\{\mp@subsup{\textrm{x}}{2}{}+\mp@subsup{\textrm{x}}{1}{2}}\end{array}]
end
while ( }\mp@subsup{x}{2}{}>0\mathrm{ ) do
    [\mp@subsup{\textrm{x}}{2}{}]\leftarrow[\mp@subsup{\textrm{x}}{2}{}-1]
end
```

- How large are the variables?
- How often do we execute the second loop?
- Maximal "size" of x_{2} times
- Existing tools usually fail with non-linear arithmetic.
- Can compute non-linear size and time bounds for prs loops.
- Approach is complete for a large class of programs.

Motivation

Goal: Infer (upper) size and time bounds for "real-world" programs

```
while (x
    [ [\begin{array}{l}{1}\\{\mp@subsup{\textrm{x}}{2}{}}\end{array}]\leftarrow[\begin{array}{c}{\mp@subsup{\textrm{x}}{1}{}-1}\\{\mp@subsup{\textrm{x}}{2}{}+\mp@subsup{\textrm{x}}{1}{2}}\end{array}]
end
while ( }\mp@subsup{x}{2}{}>0\mathrm{ ) do
    [\mp@subsup{\textrm{x}}{2}{}]\leftarrow[\mp@subsup{\textrm{x}}{2}{}-1]
end
```

- How large are the variables?
- How often do we execute the second loop?
- Maximal "size" of x_{2} times
- Existing tools usually fail with non-linear arithmetic.
- Can compute non-linear size and time bounds for prs loops.
- Approach is complete for a large class of programs.
- Size bound computations are implemented in the automatic complexity analysis tool KoAT

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

integer programs

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x_{1} and x_{2}

```
while ( }\mp@subsup{x}{1}{}>0\mathrm{ ) do
    [ [ 
end
```


Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x_{1} and x_{2}

```
while ( }\mp@subsup{\textrm{x}}{1}{}>0\mathrm{ ) do
        [ [ 
end
```


Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x_{1} and x_{2}

```
while ( }\mp@subsup{\textrm{x}}{1}{}>0\mathrm{ ) do
        [ (\begin{array}{l}{1}\\{\mp@subsup{x}{2}{}}\end{array}]\leftarrow[\begin{array}{c}{\mp@subsup{\textrm{x}}{1}{}-1}\\{\mp@subsup{\textrm{x}}{2}{}+\mp@subsup{\textrm{x}}{1}{2}}\end{array}]
end
```

- Closed form:

$$
\mathrm{cl}_{x_{1}}^{n}=x_{1}-n
$$

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x_{1} and x_{2}

```
while ( }\mp@subsup{\textrm{x}}{1}{}>0\mathrm{ ) do
    [ [\begin{array}{l}{1}\\{\mp@subsup{x}{2}{}}\end{array}]\leftarrow[\begin{array}{c}{\mp@subsup{\textrm{x}}{1}{}-1}\\{\mp@subsup{\textrm{x}}{2}{}+\mp@subsup{\textrm{x}}{1}{2}}\end{array}]
end
```

- Closed form:

$$
\mathrm{cl}_{x_{1}}^{n}=x_{1}-n
$$

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x_{1} and x_{2}

```
while ( }\mp@subsup{\textrm{x}}{1}{}>0\mathrm{ ) do
    [\begin{array}{l}{\mp@subsup{x}{1}{}}\\{\mp@subsup{\textrm{x}}{2}{}}\end{array}]\leftarrow[\begin{array}{c}{\mp@subsup{\textrm{x}}{1}{}-1}\\{\mp@subsup{\textrm{x}}{2}{}+\mp@subsup{\textrm{x}}{1}{2}}\end{array}]
end
```

- Closed form:

$$
\begin{array}{r}
\mathrm{cl}{x_{1}}_{n}^{n}= \\
x_{1}-n \\
x_{1}+n
\end{array}
$$

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x_{1} and x_{2}

```
while ( }\mp@subsup{x}{1}{}>0\mathrm{ ) do
    [ [ 
end
```

- Closed form:
- Over-approximation:
- Size bound:
- Compute closed form for x_{1}.
- Over-approximate closed form to non-negative, weakly monotonic increasing expression.
- Replace n by an over-approximation of the runtime.

$$
\begin{aligned}
& \mathrm{cl}_{x_{1}}^{n}=x_{1}-n \\
& x_{1}+n
\end{aligned}
$$

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x_{1} and x_{2}

```
while ( }\mp@subsup{x}{1}{}>0\mathrm{ ) do
    [ [ 
end
```

- Closed form:
- Over-approximation:
- Size bound:
- Compute closed form for x_{1}.
- Over-approximate closed form to non-negative, weakly monotonic increasing expression.
- Replace n by an over-approximation of the runtime.

$$
\begin{aligned}
\mathrm{cl}_{x_{1}}^{n}= & x_{1}-n \\
& x_{1}+n \\
& x_{1}+x_{1}
\end{aligned}
$$

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x_{1} and x_{2}

```
while ( }\mp@subsup{x}{1}{}>0\mathrm{ ) do
    [ [ 
end
```

- Closed form:
- Over-approximation:
- Size bound:
- Compute closed form for x_{1}.
- Over-approximate closed form to non-negative, weakly monotonic increasing expression.
- Replace n by an over-approximation of the runtime.

$$
\begin{aligned}
& \mathrm{cl}_{x_{1}}^{n}=x_{1}-n \\
& x_{1}+n \\
& x_{1}+x_{1}=2 \cdot x_{1}
\end{aligned}
$$

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x_{1} and x_{2}

```
while ( }\mp@subsup{x}{1}{}>0\mathrm{ ) do
    [ [ 
end
```

- Compute closed form for x_{1}.
- Over-approximate closed form to non-negative, weakly monotonic increasing expression.
- Replace n by an over-approximation of the runtime.
- Closed form:
- Over-approximation:
- Size bound:

$$
\begin{aligned}
& c l_{x_{1}}^{n}=x_{1}-n \\
& x_{1}+n \\
& x_{1}+x_{1}=2 \cdot x_{1}
\end{aligned}
$$

\Rightarrow for an initial configuration $x_{1}=-5$:

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x_{1} and x_{2}

```
while ( }\mp@subsup{x}{1}{}>0\mathrm{ ) do
    [ [\begin{array}{l}{1}\\{\mp@subsup{\textrm{x}}{2}{}}\end{array}]\leftarrow[\begin{array}{c}{\mp@subsup{\textrm{x}}{1}{}-1}\\{\mp@subsup{\textrm{x}}{2}{}+\mp@subsup{\textrm{x}}{1}{2}}\end{array}]
end
```

- Compute closed form for x_{1}.
- Over-approximate closed form to non-negative, weakly monotonic increasing expression.
- Replace n by an over-approximation of the runtime.
- Closed form:
- Over-approximation:
- Size bound:

$$
\begin{aligned}
& c l_{x_{1}}^{n}=x_{1}-n \\
& x_{1}+n \\
& x_{1}+x_{1}=2 \cdot x_{1}
\end{aligned}
$$

\Rightarrow for an initial configuration $x_{1}=-5: 2 \cdot|-5|=10$

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x_{1} and x_{2}

```
while ( }\mp@subsup{\textrm{x}}{1}{}>0\mathrm{ ) do
    [ [\begin{array}{l}{1}\\{\mp@subsup{x}{2}{}}\end{array}]\leftarrow[\begin{array}{c}{\mp@subsup{\textrm{x}}{1}{}-1}\\{\mp@subsup{\textrm{x}}{2}{}+\mp@subsup{\textrm{x}}{1}{2}}\end{array}]
end
```

- Compute closed form for x_{2}.
- Over-approximate closed form to non-negative, weakly monotonic increasing expression.
- Replace n by an over-approximation of the runtime.

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x_{1} and x_{2}

```
while ( }\mp@subsup{x}{1}{}>0\mathrm{ ) do
    [ [ 
end
```

- Closed form:
- Compute closed form for x_{2}.
- Over-approximate closed form to non-negative, weakly monotonic increasing expression.
- Replace n by an over-approximation of the runtime.
$\mathrm{cl}_{x_{2}}^{n}=x_{2}+n \cdot\left(\frac{1}{6}+x_{1}+x_{1}^{2}-x_{1} \cdot n-\frac{n}{2}+\frac{n^{2}}{3}\right)$

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x_{1} and x_{2}

```
while ( }\mp@subsup{x}{1}{}>0\mathrm{ ) do
    [ [ 
end
```

- Closed form:
- Over-approximation:
- Compute closed form for x_{2}.
- Over-approximate closed form to non-negative, weakly monotonic increasing expression.
- Replace n by an over-approximation of the runtime.

$$
\begin{aligned}
\mathrm{cl} & \mathrm{x}_{2}= \\
& x_{2}+n \cdot\left(\frac{1}{6}+x_{1}+x_{1}^{2}-x_{1} \cdot n-\frac{n}{2}+\frac{n^{2}}{3}\right) \\
& x_{2}+n \cdot\left(\frac{1}{6}+x_{1}+x_{1}^{2}+x_{1} \cdot n+\frac{n}{2}+\frac{n^{2}}{3}\right)
\end{aligned}
$$

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x_{1} and x_{2}

```
while ( }\mp@subsup{x}{1}{}>0\mathrm{ ) do
    [ [ 
end
```

- Closed form:
- Over-approximation:
- Size bound:
- Compute closed form for x_{2}.
- Over-approximate closed form to non-negative, weakly monotonic increasing expression.
- Replace n by an over-approximation of the runtime.

$$
\begin{aligned}
\mathrm{cl}_{x_{2}}^{n}= & x_{2}+n \cdot\left(\frac{1}{6}+x_{1}+x_{1}^{2}-x_{1} \cdot n-\frac{n}{2}+\frac{n^{2}}{3}\right) \\
& x_{2}+n \cdot\left(\frac{1}{6}+x_{1}+x_{1}^{2}+x_{1} \cdot n+\frac{n}{2}+\frac{n^{2}}{3}\right) \\
& x_{2}+x_{1} \cdot\left(\frac{1}{6}+x_{1}+x_{1}^{2}+x_{1} \cdot x_{1}+\frac{x_{1}}{2}+\frac{x_{1}^{2}}{3}\right)
\end{aligned}
$$

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

Periodic Rational Solvable Loops

while (τ) do
end

- τ built from $\wedge, \vee,(\neg, \ldots)$ and polynomial inequations over \mathbb{Z}

Periodic Rational Solvable Loops

```
while ( }\tau\mathrm{ ) do
    [ (\mathcal{S}
    end
```

- τ built from $\wedge, \vee,(\neg, \ldots)$ and polynomial inequations over \mathbb{Z}
- Partition variables into blocks:

$$
\mathcal{S}_{1} \uplus \cdots \uplus \mathcal{S}_{d}
$$

Periodic Rational Solvable Loops

```
while ( }\tau\mathrm{ ) do
    [\begin{array}{c}{\mp@subsup{\mathcal{S}}{1}{}}\\{\vdots}\\{\mp@subsup{\mathcal{S}}{d}{}}\end{array}]\leftarrow[\begin{array}{ccc}{\mp@subsup{A}{1}{}}&{0}&{0}\\{0}&{\ddots}&{0}\\{0}&{0}&{\mp@subsup{A}{d}{}}\end{array}][\begin{array}{c}{\mp@subsup{\mathcal{S}}{1}{}}\\{\vdots}\\{\mp@subsup{\mathcal{S}}{d}{}}\end{array}]
    end
```

- τ built from $\wedge, \vee,(\neg, \ldots)$ and polynomial inequations over \mathbb{Z}
- Partition variables into blocks:

$$
\mathcal{S}_{1} \uplus \cdots \uplus \mathcal{S}_{d}
$$

- $A_{i} \in \mathbb{Z}^{\left|\mathcal{S}_{i}\right| \times\left|\mathcal{S}_{i}\right|}$ integer matrix

Periodic Rational Solvable Loops

```
while ( }\tau\mathrm{ ) do
    [c}\mp@subsup{\mathcal{S}}{1}{
    end
```

- Variable value depends at most linearly on its previous value.

Periodic Rational Solvable Loops

```
while ( }\tau\mathrm{ ) do
    [\begin{array}{c}{\mp@subsup{\mathcal{S}}{1}{}}\\{\vdots}\\{\mp@subsup{\mathcal{S}}{d}{}}\end{array}]\leftarrow[\begin{array}{ccc}{\mp@subsup{A}{1}{}}&{0}&{0}\\{0}&{\ddots}&{0}\\{0}&{0}&{\mp@subsup{A}{d}{}}\end{array}][\begin{array}{c}{\mp@subsup{\mathcal{S}}{1}{}}\\{\vdots}\\{\mp@subsup{\mathcal{S}}{d}{}}\end{array}]
    end
```

- τ built from $\wedge, \vee,(\neg, \ldots)$ and polynomial inequations over \mathbb{Z}
- Partition variables into blocks:

$$
\mathcal{S}_{1} \uplus \cdots \uplus \mathcal{S}_{d}
$$

- $A_{i} \in \mathbb{Z}^{\left|\mathcal{S}_{i}\right| \times\left|\mathcal{S}_{i}\right|}$ integer matrix
- Variable value depends at most linearly on its previous value.
- Prevent super-exponential growth: $\mathrm{x} \leftarrow \mathrm{x}^{2}$ (so the value is $x^{\left(2^{n}\right)}$)

Periodic Rational Solvable Loops

```
while ( }\tau\mathrm{ ) do
    [\begin{array}{c}{\mp@subsup{\mathcal{S}}{1}{}}\\{\vdots}\\{\mp@subsup{\mathcal{S}}{d}{}}\end{array}]\leftarrow[\begin{array}{ccc}{\mp@subsup{A}{1}{}}&{0}&{0}\\{0}&{\ddots}&{0}\\{0}&{0}&{\mp@subsup{A}{d}{}}\end{array}][\begin{array}{c}{\mp@subsup{\mathcal{S}}{1}{}}\\{\vdots}\\{\mp@subsup{\mathcal{S}}{d}{}}\end{array}]+[\begin{array}{c}{\mp@subsup{p}{1}{}}\\{\vdots}\\{\mp@subsup{p}{d}{}}\end{array}]
    end
```

- τ built from $\wedge, \vee,(\neg, \ldots)$ and polynomial inequations over \mathbb{Z}
- Partition variables into blocks:

$$
\mathcal{S}_{1} \uplus \cdots \uplus \mathcal{S}_{d}
$$

- $A_{i} \in \mathbb{Z}^{\left|\mathcal{S}_{i}\right| \times\left|\mathcal{S}_{i}\right|}$ integer matrix
- $p_{i} \in \mathbb{Z}\left[\bigcup_{j<i} S_{j}\right]^{\left|\mathcal{S}_{i}\right|}$ polynomials
- Variable value depends at most linearly on its previous value.
- Prevent super-exponential growth: $\mathrm{x} \leftarrow \mathrm{x}^{2}$ (so the value is $x^{\left(2^{n}\right)}$)

Periodic Rational Solvable Loops

```
while ( }\tau\mathrm{ ) do
    [\begin{array}{c}{\mp@subsup{\mathcal{S}}{1}{}}\\{\vdots}\\{\mp@subsup{\mathcal{S}}{d}{}}\end{array}]\leftarrow[\begin{array}{ccc}{\mp@subsup{A}{1}{}}&{0}&{0}\\{0}&{\ddots}&{0}\\{0}&{0}&{\mp@subsup{A}{d}{}}\end{array}][\begin{array}{c}{\mp@subsup{\mathcal{S}}{1}{}}\\{\vdots}\\{\mp@subsup{\mathcal{S}}{d}{}}\end{array}]+[\begin{array}{c}{\mp@subsup{p}{1}{}}\\{\vdots}\\{\mp@subsup{p}{d}{}}\end{array}]
end
```

- τ built from $\wedge, \vee,(\neg, \ldots)$ and polynomial inequations over \mathbb{Z}
- Partition variables into blocks:

$$
\mathcal{S}_{1} \uplus \cdots \uplus \mathcal{S}_{d}
$$

- $A_{i} \in \mathbb{Z}^{\left|\mathcal{S}_{i}\right| \times\left|\mathcal{S}_{i}\right|}$ integer matrix
- $p_{i} \in \mathbb{Z}\left[\bigcup_{j<i} S_{j}\right]^{\left|\mathcal{S}_{i}\right|}$ polynomials
- Variable value depends at most linearly on its previous value.
- Prevent super-exponential growth: $\mathrm{x} \leftarrow \mathrm{x}^{2}$ (so the value is $x^{\left(2^{n}\right)}$)
- Non-linear dependencies only of variables from blocks with lower indices

Periodic Rational Solvable Loops

```
while ( }\tau\mathrm{ ) do
    [\begin{array}{c}{\mp@subsup{\mathcal{S}}{1}{}}\\{\vdots}\\{\mp@subsup{\mathcal{S}}{d}{}}\end{array}]\leftarrow[\begin{array}{ccc}{\mp@subsup{A}{1}{}}&{0}&{0}\\{0}&{\ddots}&{0}\\{0}&{0}&{\mp@subsup{A}{d}{}}\end{array}][\begin{array}{c}{\mp@subsup{\mathcal{S}}{1}{}}\\{\vdots}\\{\mp@subsup{\mathcal{S}}{d}{}}\end{array}]+[\begin{array}{c}{\mp@subsup{p}{1}{}}\\{\vdots}\\{\mp@subsup{p}{d}{}}\end{array}]
end
```

- τ built from $\wedge, \vee,(\neg, \ldots)$ and polynomial inequations over \mathbb{Z}
- Partition variables into blocks:

$$
\mathcal{S}_{1} \uplus \cdots \uplus \mathcal{S}_{d}
$$

- $A_{i} \in \mathbb{Z}^{\left|\mathcal{S}_{i}\right| \times\left|\mathcal{S}_{i}\right|}$ integer matrix
- $p_{i} \in \mathbb{Z}\left[\bigcup_{j<i} S_{j}\right]^{\left|\mathcal{S}_{i}\right|}$ polynomials
- Variable value depends at most linearly on its previous value.
- Prevent super-exponential growth: $\mathrm{x} \leftarrow \mathrm{x}^{2}$ (so the value is $x^{\left(2^{n}\right)}$)
- Non-linear dependencies only of variables from blocks with lower indices
- Solve recurrence to obtain closed form.

Periodic Rational Solvable Loops

- τ built from $\wedge, \vee,(\neg, \ldots)$ and polynomial inequations over \mathbb{Z}
- Partition variables into blocks:

$$
\mathcal{S}_{1} \uplus \cdots \uplus \mathcal{S}_{d}
$$

- $A_{i} \in \mathbb{Z}^{\left|\mathcal{S}_{i}\right| \times\left|\mathcal{S}_{i}\right|}$ integer matrix
- $p_{i} \in \mathbb{Z}\left[\bigcup_{j<i} S_{j}\right]^{\left|\mathcal{S}_{i}\right|}$ polynomials
- Variable value depends at most linearly on its previous value.
- Prevent super-exponential growth: $\mathrm{x} \leftarrow \mathrm{x}^{2}$ (so the value is $x^{\left(2^{n}\right)}$)
- Non-linear dependencies only of variables from blocks with lower indices
- Solve recurrence to obtain closed form.

Periodic Rational Solvable Loops

- τ built from $\wedge, \vee,(\neg, \ldots)$ and polynomial inequations over \mathbb{Z}
- Partition variables into blocks:

$$
\mathcal{S}_{1} \uplus \cdots \uplus \mathcal{S}_{d}
$$

- $A_{i} \in \mathbb{Z}^{\left|\mathcal{S}_{i}\right| \times\left|\mathcal{S}_{i}\right|}$ integer matrix
- $p_{i} \in \mathbb{Z}\left[\bigcup_{j<i} S_{j}\right]^{\left|\mathcal{S}_{i}\right|}$ polynomials
- Variable value depends at most linearly on its previous value.
- Prevent super-exponential growth: $\mathrm{x} \leftarrow \mathrm{x}^{2}$ (so the value is $x^{\left(2^{n}\right)}$)
- Non-linear dependencies only of variables from blocks with lower indices
- Solve recurrence to obtain closed form.

Periodic Rational Solvable Loops

while ($\mathrm{x}_{1}>0$) do
 end

- τ built from $\wedge, \vee,(\neg, \ldots)$ and polynomial inequations over \mathbb{Z}
- Partition variables into blocks:

$$
\mathcal{S}_{1} \uplus \cdots \uplus \mathcal{S}_{d}
$$

- $A_{i} \in \mathbb{Z}^{\left|\mathcal{S}_{i}\right| \times\left|\mathcal{S}_{i}\right|}$ integer matrix
- $p_{i} \in \mathbb{Z}\left[\bigcup_{j<i} S_{j}\right]^{\left|\mathcal{S}_{i}\right|}$ polynomials
- Variable value depends at most linearly on its previous value.
- Prevent super-exponential growth: $\mathrm{x} \leftarrow \mathrm{x}^{2}$ (so the value is $x^{\left(2^{n}\right)}$)
- Non-linear dependencies only of variables from blocks with lower indices
- Solve recurrence to obtain closed form.

Periodic Rational Solvable Loops

while ($\mathrm{x}_{1}>0$) do
 $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right] \leftarrow\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -5 & -3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]+\left[\begin{array}{c}-1 \\ x_{1}^{2} \\ 0 \\ 0\end{array}\right]$
 end

- τ built from $\wedge, \vee,(\neg, \ldots)$ and polynomial inequations over \mathbb{Z}
- Partition variables into blocks:

$$
\mathcal{S}_{1} \uplus \cdots \uplus \mathcal{S}_{d}
$$

- $A_{i} \in \mathbb{Z}^{\left|\mathcal{S}_{i}\right| \times\left|\mathcal{S}_{i}\right|}$ integer matrix
- $p_{i} \in \mathbb{Z}\left[\bigcup_{j<i} S_{j}\right]^{\left|\mathcal{S}_{i}\right|}$ polynomials
- Variable value depends at most linearly on its previous value.
- Prevent super-exponential growth: $\mathrm{x} \leftarrow \mathrm{x}^{2}$ (so the value is $x^{\left(2^{n}\right)}$)
- Non-linear dependencies only of variables from blocks with lower indices
- Solve recurrence to obtain closed form.

Closed Forms: PRS Loops

- Closed forms are computable for all prs loops.

Closed Forms: PRS Loops

- Closed forms are computable for all prs loops.
- poly-exponential expressions:

Closed Forms: PRS Loops

- Closed forms are computable for all prs loops.
- poly-exponential expressions:

$$
\sum_{j} \alpha_{j} \cdot n^{a_{j}} \cdot b_{j}^{n} \text { with } \alpha_{j} \in \overline{\mathbb{Q}}\left[x_{1}, \ldots, x_{d}\right], a_{j} \in \mathbb{N} \text { and } b_{j} \in \overline{\mathbb{Q}}
$$

Closed Forms: PRS Loops

- Closed forms are computable for all prs loops.
- poly-exponential expressions:

$$
\sum_{j} \alpha_{j} \cdot n^{a_{j}} \cdot b_{j}^{n} \text { with } \alpha_{j} \in \overline{\mathbb{Q}}\left[x_{1}, \ldots, x_{d}\right], a_{j} \in \mathbb{N} \text { and } b_{j} \in \overline{\mathbb{Q}}
$$

```
while ( }\mp@subsup{\textrm{x}}{1}{}>0\mathrm{ ) do
    [ (\begin{array}{l}{\mp@subsup{x}{1}{}}\\{\mp@subsup{x}{2}{}}\\{\mp@subsup{x}{3}{}}\\{\mp@subsup{x}{4}{}}\end{array}]\leftarrow[\begin{array}{llcc}{1}&{0}&{0}&{0}\\{0}&{1}&{0}&{0}\\{0}&{0}&{3}&{2}\\{0}&{0}&{-5}&{-3}\end{array}][\begin{array}{l}{\mp@subsup{x}{1}{}}\\{\mp@subsup{x}{2}{}}\\{\mp@subsup{x}{3}{}}\\{\mp@subsup{x}{4}{}}\end{array}]+[\begin{array}{c}{-1}\\{\mp@subsup{x}{1}{2}}\\{0}\\{0}\end{array}]
end
```


Closed Forms: PRS Loops

- Closed forms are computable for all prs loops.
- poly-exponential expressions:

$$
\sum_{j} \alpha_{j} \cdot n^{a_{j}} \cdot b_{j}^{n} \text { with } \alpha_{j} \in \overline{\mathbb{Q}}\left[x_{1}, \ldots, x_{d}\right], a_{j} \in \mathbb{N} \text { and } b_{j} \in \overline{\mathbb{Q}}
$$

$$
\text { while }\left(x_{1}>0\right) \text { do }
$$

$$
\text { closed form for } \mathrm{x}_{2} \text { : }
$$

Closed Forms: PRS Loops

- Closed forms are computable for all prs loops.
- poly-exponential expressions:

$$
\sum_{j} \alpha_{j} \cdot n^{a_{j}} \cdot b_{j}^{n} \text { with } \alpha_{j} \in \overline{\mathbb{Q}}\left[x_{1}, \ldots, x_{d}\right], a_{j} \in \mathbb{N} \text { and } b_{j} \in \overline{\mathbb{Q}}
$$

$$
\begin{aligned}
& \text { while }\left(x_{1}>0\right) \text { do } \\
& \qquad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \leftarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & 2 \\
0 & 0 & -5 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{c}
-1 \\
x_{1}^{2} \\
0 \\
0
\end{array}\right] \\
& \text { end }
\end{aligned}
$$

Closed Forms: PRS Loops

- Closed forms are computable for all prs loops.
- poly-exponential expressions:

$$
\sum_{j} \alpha_{j} \cdot n^{a_{j}} \cdot b_{j}^{n} \text { with } \alpha_{j} \in \overline{\mathbb{Q}}\left[x_{1}, \ldots, x_{d}\right], a_{j} \in \mathbb{N} \text { and } b_{j} \in \overline{\mathbb{Q}}
$$

$$
\begin{aligned}
& \text { while }\left(x_{1}>0\right) \text { do } \\
& \qquad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \leftarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & 2 \\
0 & 0 & -5 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{c}
-1 \\
x_{1}^{2} \\
0 \\
0
\end{array}\right] \\
& \text { end }
\end{aligned}
$$

Closed Forms: PRS Loops

- Closed forms are computable for all prs loops.
- poly-exponential expressions:

$$
\sum_{j} \alpha_{j} \cdot n^{a_{j}} \cdot b_{j}^{n} \text { with } \alpha_{j} \in \overline{\mathbb{Q}}\left[x_{1}, \ldots, x_{d}\right], a_{j} \in \mathbb{N} \text { and } b_{j} \in \overline{\mathbb{Q}}
$$

$$
\begin{aligned}
& \text { while }\left(x_{1}>0\right) \text { do } \\
& \qquad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \leftarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & 2 \\
0 & 0 & -5 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{c}
-1 \\
x_{1}^{2} \\
0 \\
0
\end{array}\right] \\
& \text { end }
\end{aligned}
$$

Closed Forms: PRS Loops

- Closed forms are computable for all prs loops.
- poly-exponential expressions:

$$
\sum_{j} \alpha_{j} \cdot n^{a_{j}} \cdot b_{j}^{n} \text { with } \alpha_{j} \in \overline{\mathbb{Q}}\left[x_{1}, \ldots, x_{d}\right], a_{j} \in \mathbb{N} \text { and } b_{j} \in \overline{\mathbb{Q}}
$$

$$
\begin{aligned}
& \text { while }\left(x_{1}>0\right) \text { do } \\
& \qquad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \leftarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & 2 \\
0 & 0 & -5 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{c}
-1 \\
x_{1}^{2} \\
0 \\
0
\end{array}\right] \\
& \text { end }
\end{aligned}
$$

Closed Forms: PRS Loops

- Closed forms are computable for all prs loops.
- poly-exponential expressions:

$$
\sum_{j} \alpha_{j} \cdot n^{a_{j}} \cdot b_{j}^{n} \text { with } \alpha_{j} \in \overline{\mathbb{Q}}\left[x_{1}, \ldots, x_{d}\right], a_{j} \in \mathbb{N} \text { and } b_{j} \in \overline{\mathbb{Q}}
$$

$$
\begin{aligned}
& \text { while }\left(x_{1}>0\right) \text { do } \\
& \qquad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \leftarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & 2 \\
0 & 0 & -5 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{c}
-1 \\
x_{1}^{2} \\
0 \\
0
\end{array}\right] \\
& \text { end }
\end{aligned}
$$

Closed Forms: PRS Loops

- Closed forms are computable for all prs loops.
- poly-exponential expressions:

$$
\sum_{j} \alpha_{j} \cdot n^{a_{j}} \cdot b_{j}^{n} \text { with } \alpha_{j} \in \overline{\mathbb{Q}}\left[x_{1}, \ldots, x_{d}\right], a_{j} \in \mathbb{N} \text { and } b_{j} \in \overline{\mathbb{Q}}
$$

$$
\begin{aligned}
& \text { while }\left(x_{1}>0\right) \text { do } \\
& \qquad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \leftarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & 2 \\
0 & 0 & -5 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{c}
-1 \\
x_{1}^{2} \\
0 \\
0
\end{array}\right] \\
& \text { end }
\end{aligned}
$$

Closed Forms: PRS Loops

- Closed forms are computable for all prs loops.
- poly-exponential expressions:

$$
\sum_{j} \alpha_{j} \cdot n^{a_{j}} \cdot b_{j}^{n} \text { with } \alpha_{j} \in \overline{\mathbb{Q}}\left[x_{1}, \ldots, x_{d}\right], a_{j} \in \mathbb{N} \text { and } b_{j} \in \overline{\mathbb{Q}}
$$

$$
\begin{aligned}
& \text { while }\left(x_{1}>0\right) \text { do } \\
& \qquad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \leftarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & 2 \\
0 & 0 & -5 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{c}
-1 \\
x_{1}^{2} \\
0 \\
0
\end{array}\right] \\
& \text { end }
\end{aligned}
$$

Closed Forms: PRS Loops

- Closed forms are computable for all prs loops.
- poly-exponential expressions:

$$
\sum_{j} \alpha_{j} \cdot n^{a_{j}} \cdot b_{j}^{n} \text { with } \alpha_{j} \in \overline{\mathbb{Q}}\left[x_{1}, \ldots, x_{d}\right], a_{j} \in \mathbb{N} \text { and } b_{j} \in \overline{\mathbb{Q}}
$$

```
while ( }\mp@subsup{\textrm{x}}{1}{}>0\mathrm{ ) do
    [ (\begin{array}{l}{\mp@subsup{x}{1}{}}\\{\mp@subsup{x}{2}{}}\\{\mp@subsup{x}{3}{}}\\{\mp@subsup{x}{4}{}}\end{array}]\leftarrow[\begin{array}{llcc}{1}&{0}&{0}&{0}\\{0}&{1}&{0}&{0}\\{0}&{0}&{3}&{2}\\{0}&{0}&{-5}&{-3}\end{array}][\begin{array}{l}{\mp@subsup{x}{1}{}}\\{\mp@subsup{x}{2}{}}\\{\mp@subsup{x}{3}{}}\\{\mp@subsup{x}{4}{}}\end{array}]+[\begin{array}{c}{-1}\\{\mp@subsup{x}{1}{2}}\\{0}\\{0}\end{array}]
end
```

- How to handle algebraic $\overline{\mathbb{Q}} \backslash \mathbb{Q}$ numbers?

Closed Forms: PRS Loops

- Closed forms are computable for all prs loops.
- poly-exponential expressions:

$$
\sum_{j} \alpha_{j} \cdot n^{a_{j}} \cdot b_{j}^{n} \text { with } \alpha_{j} \in \overline{\mathbb{Q}}\left[x_{1}, \ldots, x_{d}\right], a_{j} \in \mathbb{N} \text { and } b_{j} \in \overline{\mathbb{Q}}
$$

```
while ( }\mp@subsup{\textrm{x}}{1}{}>0\mathrm{ ) do
    [ (\begin{array}{l}{\mp@subsup{x}{1}{}}\\{\mp@subsup{x}{2}{}}\\{\mp@subsup{x}{3}{}}\\{\mp@subsup{x}{4}{}}\end{array}]\leftarrow[\begin{array}{cccc}{1}&{0}&{0}&{0}\\{0}&{1}&{0}&{0}\\{0}&{0}&{3}&{2}\\{0}&{0}&{-5}&{-3}\end{array}][\begin{array}{l}{\mp@subsup{x}{1}{}}\\{\mp@subsup{x}{2}{}}\\{\mp@subsup{x}{3}{}}\\{\mp@subsup{x}{4}{}}\end{array}]+[\begin{array}{c}{-1}\\{\mp@subsup{x}{1}{2}}\\{0}\\{0}\end{array}]
end
```

- How to handle algebraic $\overline{\mathbb{Q}} \backslash \mathbb{Q}$ numbers?
- When do we have polynomial size bounds?

Closed Forms: PRS Loops

- Closed forms are computable for all prs loops.
- poly-exponential expressions:

$$
\sum_{j} \alpha_{j} \cdot n^{a_{j}} \cdot b_{j}^{n} \text { with } \alpha_{j} \in \overline{\mathbb{Q}}\left[x_{1}, \ldots, x_{d}\right], a_{j} \in \mathbb{N} \text { and } b_{j} \in \overline{\mathbb{Q}}
$$

```
while ( }\mp@subsup{\textrm{x}}{1}{}>0\mathrm{ ) do
    [ (\begin{array}{l}{\mp@subsup{x}{1}{}}\\{\mp@subsup{x}{2}{}}\\{\mp@subsup{x}{3}{}}\\{\mp@subsup{x}{4}{}}\end{array}]\leftarrow[\begin{array}{cccc}{1}&{0}&{0}&{0}\\{0}&{1}&{0}&{0}\\{0}&{0}&{3}&{2}\\{0}&{0}&{-5}&{-3}\end{array}][\begin{array}{l}{\mp@subsup{x}{1}{}}\\{\mp@subsup{x}{2}{}}\\{\mp@subsup{x}{3}{}}\\{\mp@subsup{x}{4}{}}\end{array}]+[\begin{array}{c}{-1}\\{\mp@subsup{x}{1}{2}}\\{0}\\{0}\end{array}]
end
```

- How to handle algebraic $\overline{\mathbb{Q}} \backslash \mathbb{Q}$ numbers?
- When do we have polynomial size bounds?
- When are (polynomial) time bounds computable?

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x_{3}

```
while (x
    [ [ 
end
```

- Compute closed form for x_{3}.
- Over-approximate closed form to non-negative, weakly monotonic increasing expression.
- Replace n by an over-approximation of the runtime.

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x_{3}

- Closed form:

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x_{3}
while $\left(x_{1}>0\right)$ do

$$
\left[\begin{array}{l}x_{1} \\ x_{3} \\ x_{4}\end{array}\right] \leftarrow\left[\begin{array}{c}x_{1}-1 \\ 3 x_{3}+2 x_{4} \\ -5 x_{3}-3 x_{4}\end{array}\right]
$$

end

- Compute closed form for x_{3}.
- Over-approximate closed form to non-negative, weakly monotonic increasing expression.
- Replace n by an over-approximation of the runtime.
- Closed form:

$$
\mathrm{cl}_{x_{3}}^{n}=\frac{1}{2} \cdot \alpha \cdot(-\mathrm{i})^{n}+\frac{1}{2} \cdot \bar{\alpha} \cdot \mathrm{i}^{n}
$$

- Over-approximation:

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x_{3}
while $\left(x_{1}>0\right)$ do

$$
\left[\begin{array}{l}x_{1} \\ x_{3} \\ x_{4}\end{array}\right] \leftarrow\left[\begin{array}{c}x_{1}-1 \\ 3 x_{3}+2 x_{4} \\ -5 x_{3}-3 x_{4}\end{array}\right]
$$

end

- Compute closed form for x_{3}.
- Over-approximate closed form to non-negative, weakly monotonic increasing expression.
- Replace n by an over-approximation of the runtime.
- Closed form:
- Over-approximation:

$$
\begin{aligned}
& \mathrm{cl} x_{3}^{n}= \\
& \frac{1}{2} \cdot \alpha \cdot(-\mathrm{i})^{n}+\frac{1}{2} \cdot \bar{\alpha} \cdot \mathrm{i}^{n} \\
& \frac{1}{2} \cdot|\alpha| \cdot(|-\mathrm{i}|)^{n}+\frac{1}{2} \cdot|\bar{\alpha}| \cdot|\mathrm{i}|^{n}
\end{aligned}
$$

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x_{3}
while $\left(x_{1}>0\right)$ do

$$
\left[\begin{array}{l}x_{1} \\ x_{3} \\ x_{4}\end{array}\right] \leftarrow\left[\begin{array}{c}x_{1}-1 \\ 3 x_{3}+2 x_{4} \\ -5 x_{3}-3 x_{4}\end{array}\right]
$$

end

- Compute closed form for x_{3}.
- Over-approximate closed form to non-negative, weakly monotonic increasing expression.
- Replace n by an over-approximation of the runtime.
- Closed form:
- Over-approximation:

$$
\begin{aligned}
\mathrm{cl}_{x_{3}}^{n}= & \frac{1}{2} \cdot \alpha \cdot(-\mathrm{i})^{n}+\frac{1}{2} \cdot \bar{\alpha} \cdot \mathrm{i}^{n} \\
& \frac{1}{2} \cdot|\alpha| \cdot(|-\mathrm{i}|)^{n}+\frac{1}{2} \cdot|\bar{\alpha}| \cdot|\mathrm{i}|^{n}=\frac{1}{2} \cdot|\alpha|+\frac{1}{2} \cdot|\bar{\alpha}|
\end{aligned}
$$

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x_{3}
while $\left(x_{1}>0\right)$ do

$$
\left[\begin{array}{l}x_{1} \\ x_{3} \\ x_{4}\end{array}\right] \leftarrow\left[\begin{array}{c}x_{1}-1 \\ 3 x_{3}+2 x_{4} \\ -5 x_{3}-3 x_{4}\end{array}\right]
$$

end

- Compute closed form for x_{3}.
- Over-approximate closed form to non-negative, weakly monotonic increasing expression.
- Replace n by an over-approximation of the runtime.

Closed form:

- Over-approximation:

$$
\begin{aligned}
\mathrm{cl}_{x_{3}}^{n}= & \frac{1}{2} \cdot \alpha \cdot(-\mathrm{i})^{n}+\frac{1}{2} \cdot \bar{\alpha} \cdot \mathrm{i}^{n} \\
& \frac{1}{2} \cdot|\alpha| \cdot(|-\mathrm{i}|)^{n}+\frac{1}{2} \cdot|\bar{\alpha}| \cdot|\mathrm{i}|^{n}=|\alpha|
\end{aligned}
$$

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x_{3}
while $\left(x_{1}>0\right)$ do

$$
\left[\begin{array}{l}x_{1} \\ x_{3} \\ x_{4}\end{array}\right] \leftarrow\left[\begin{array}{c}x_{1}-1 \\ 3 x_{3}+2 x_{4} \\ -5 x_{3}-3 x_{4}\end{array}\right]
$$

end

- Compute closed form for x_{3}.
- Over-approximate closed form to non-negative, weakly monotonic increasing expression.
- Replace n by an over-approximation of the runtime.
- Closed form:
- Over-approximation:
- Size bound:

$$
\begin{aligned}
\mathrm{cl}_{x_{3}}^{n}= & \frac{1}{2} \cdot \alpha \cdot(-\mathrm{i})^{n}+\frac{1}{2} \cdot \bar{\alpha} \cdot \mathrm{i}^{n} \\
& \frac{1}{2} \cdot|\alpha| \cdot(|-\mathrm{i}|)^{n}+\frac{1}{2} \cdot|\bar{\alpha}| \cdot|\mathrm{i}|^{n}=|\alpha| \\
& |\alpha|=4 \cdot x_{3}+2 \cdot x_{4}
\end{aligned}
$$

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x_{3}
while $\left(x_{1}>0\right)$ do

$$
\left[\begin{array}{l}x_{1} \\ x_{3} \\ x_{4}\end{array}\right] \leftarrow\left[\begin{array}{c}x_{1}-1 \\ 3 x_{3}+2 x_{4} \\ -5 x_{3}-3 x_{4}\end{array}\right]
$$

end

- Compute closed form for x_{3}.
- Over-approximate closed form to non-negative, weakly monotonic increasing expression.
- Replace n by an over-approximation of the runtime.
- Closed form:
- Over-approximation:

$$
\begin{aligned}
\mathrm{cl}_{x_{3}}^{n}= & \frac{1}{2} \cdot \alpha \cdot(-\mathrm{i})^{n}+\frac{1}{2} \cdot \bar{\alpha} \cdot \mathrm{i}^{n} \\
& \frac{1}{2} \cdot|\alpha| \cdot(|-\mathrm{i}|)^{n}+\frac{1}{2} \cdot|\bar{\alpha}| \cdot|\mathrm{i}|^{n}=|\alpha| \\
& |\alpha|=4 \cdot x_{3}+2 \cdot x_{4}
\end{aligned}
$$

- How to handle algebraic $\overline{\mathbb{Q}} \backslash \mathbb{Q}$ numbers?

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x_{3}
while $\left(x_{1}>0\right)$ do

$$
\left[\begin{array}{l}x_{1} \\ x_{3} \\ x_{4}\end{array}\right] \leftarrow\left[\begin{array}{c}x_{1}-1 \\ 3 x_{3}+2 x_{4} \\ -5 x_{3}-3 x_{4}\end{array}\right]
$$

end

- Compute closed form for x_{3}.
- Over-approximate closed form to non-negative, weakly monotonic increasing expression.
- Replace n by an over-approximation of the runtime.
- Closed form:
- Over-approximation:

$$
\begin{aligned}
\mathrm{cl}_{x_{3}}^{n}= & \frac{1}{2} \cdot \alpha \cdot(-\mathrm{i})^{n}+\frac{1}{2} \cdot \bar{\alpha} \cdot \mathrm{i}^{n} \\
& \frac{1}{2} \cdot|\alpha| \cdot(|-\mathrm{i}|)^{n}+\frac{1}{2} \cdot|\bar{\alpha}| \cdot|\mathrm{i}|^{n}=|\alpha| \\
& |\alpha|=4 \cdot x_{3}+2 \cdot x_{4}
\end{aligned}
$$

- How to handle algebraic $\overline{\mathbb{Q}} \backslash \mathbb{Q}$ numbers? Take absolute value!

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x_{3}
while $\left(x_{1}>0\right)$ do

$$
\left[\begin{array}{l}x_{1} \\ x_{3} \\ x_{4}\end{array}\right] \leftarrow\left[\begin{array}{c}x_{1}-1 \\ 3 x_{3}+2 x_{4} \\ -5 x_{3}-3 x_{4}\end{array}\right]
$$

end

- Compute closed form for x_{3}.
- Over-approximate closed form to non-negative, weakly monotonic increasing expression.
- Replace n by an over-approximation of the runtime.
- Closed form:
- Over-approximation:
- Size bound:

$$
\begin{aligned}
\mathrm{cl}_{x_{3}}^{n}= & \frac{1}{2} \cdot \alpha \cdot(-\mathrm{i})^{n}+\frac{1}{2} \cdot \bar{\alpha} \cdot \mathrm{i}^{n} \\
& \frac{1}{2} \cdot|\alpha| \cdot(|-\mathrm{i}|)^{n}+\frac{1}{2} \cdot|\bar{\alpha}| \cdot|\mathrm{i}|^{n}=|\alpha| \\
& |\alpha|=4 \cdot x_{3}+2 \cdot x_{4}
\end{aligned}
$$

- How to handle algebraic $\overline{\mathbb{Q}} \backslash \mathbb{Q}$ numbers? Take absolute value!
- When do we have polynomial size bounds?

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x_{3}

- Compute closed form for x_{3}.
- Over-approximate closed form to non-negative, weakly monotonic increasing expression.
- Replace n by an over-approximation of the runtime.
- Closed form:
- Over-approximation:
- Size bound:

$$
\begin{aligned}
\mathrm{cl}_{x_{3}}^{n}= & \frac{1}{2} \cdot \alpha \cdot(-\mathrm{i})^{n}+\frac{1}{2} \cdot \bar{\alpha} \cdot \mathrm{i}^{n} \\
& \frac{1}{2} \cdot|\alpha| \cdot(|-\mathrm{i}|)^{n}+\frac{1}{2} \cdot|\bar{\alpha}| \cdot|\mathrm{i}|^{n}=|\alpha| \\
& |\alpha|=4 \cdot x_{3}+2 \cdot x_{4}
\end{aligned}
$$

- How to handle algebraic $\overline{\mathbb{Q}} \backslash \mathbb{Q}$ numbers? Take absolute value!
- When do we have polynomial size bounds?
- All eigenvalues λ are unit: $|\lambda| \leq 1$

Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x_{3}

- Compute closed form for x_{3}.
- Over-approximate closed form to non-negative, weakly monotonic increasing expression.
- Replace n by an over-approximation of the runtime.
- Closed form:
- Over-approximation:
- Size bound:

$$
\begin{aligned}
\mathrm{cl}_{x_{3}}^{n}= & \frac{1}{2} \cdot \alpha \cdot(-\mathrm{i})^{n}+\frac{1}{2} \cdot \bar{\alpha} \cdot \mathrm{i}^{n} \\
& \frac{1}{2} \cdot|\alpha| \cdot(|-\mathrm{i}|)^{n}+\frac{1}{2} \cdot|\bar{\alpha}| \cdot|\mathrm{i}|^{n}=|\alpha| \\
& |\alpha|=4 \cdot x_{3}+2 \cdot x_{4}
\end{aligned}
$$

- How to handle algebraic $\overline{\mathbb{Q}} \backslash \mathbb{Q}$ numbers? Take absolute value!
- When do we have polynomial size bounds?
- All eigenvalues λ are unit: $|\lambda| \leq 1$
- When are (polynomial) time bounds computable?

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

Periodic Rational Solvable Loops

```
while ( }\tau\mathrm{ ) do
    [\begin{array}{c}{\mp@subsup{\mathcal{S}}{1}{}}\\{\vdots}\\{\mp@subsup{\mathcal{S}}{d}{}}\end{array}]\leftarrow[\begin{array}{ccc}{\mp@subsup{A}{1}{}}&{0}&{0}\\{0}&{\ddots}&{0}\\{0}&{0}&{\mp@subsup{A}{d}{}}\end{array}][\begin{array}{c}{\mp@subsup{\mathcal{S}}{1}{}}\\{\vdots}\\{\mp@subsup{\mathcal{S}}{d}{}}\end{array}]+[\begin{array}{c}{\mp@subsup{p}{1}{}}\\{\vdots}\\{}\\{}\end{array}]
end
```

- τ built from $\wedge, \vee,(\neg, \ldots)$ and polynomial inequations over \mathbb{Z}
- Partition variables into blocks:

$$
\mathcal{S}_{1} \uplus \cdots \uplus \mathcal{S}_{d}
$$

- $A_{i} \in \mathbb{Z}^{\left|\mathcal{S}_{i}\right| \times\left|\mathcal{S}_{i}\right|}$ integer matrix
- $p_{i} \in \mathbb{Z}\left[\bigcup_{j<i} S_{j}\right]^{\left|\mathcal{S}_{i}\right|}$ polynomials
- Variable value depends at most linearly on its previous value.
- Prevent super-exponential growth: $\mathrm{x} \leftarrow \mathrm{x}^{2}$ (so the value is $x^{\left(2^{n}\right)}$)
- Non-linear dependencies only of variables from blocks with lower indices
- Solve recurrence to obtain closed form.

Periodic Rational Solvable Loops

```
while ( }\tau\mathrm{ ) do
    [\begin{array}{c}{\mp@subsup{\mathcal{S}}{1}{}}\\{\vdots}\\{\mp@subsup{\mathcal{S}}{d}{}}\end{array}]\leftarrow[\begin{array}{ccc}{\mp@subsup{A}{1}{}}&{0}&{0}\\{0}&{\ddots}&{0}\\{0}&{0}&{\mp@subsup{A}{d}{}}\end{array}][\begin{array}{c}{\mp@subsup{\mathcal{S}}{1}{}}\\{\vdots}\\{\mp@subsup{\mathcal{S}}{d}{}}\end{array}]+[\begin{array}{c}{\mp@subsup{p}{1}{}}\\{\vdots}\\{\mp@subsup{p}{d}{}}\end{array}]
end
```

- τ built from $\wedge, \vee,(\neg, \ldots)$ and polynomial inequations over \mathbb{Z}
- Partition variables into blocks:

$$
\mathcal{S}_{1} \uplus \cdots \uplus \mathcal{S}_{d}
$$

- $A_{i} \in \mathbb{Z}^{\left|\mathcal{S}_{i}\right| \times\left|\mathcal{S}_{i}\right|}$ integer matrix
- $p_{i} \in \mathbb{Z}\left[\bigcup_{j<i} S_{j}\right]^{\left|\mathcal{S}_{i}\right|}$ polynomials
- Variable value depends at most linearly on its previous value.
- Prevent super-exponential growth: $\mathrm{x} \leftarrow \mathrm{x}^{2}$ (so the value is $x^{\left(2^{n}\right)}$)
- Non-linear dependencies only of variables from blocks with lower indices
- Solve recurrence to obtain closed form.
- Periodic rational: there exists $n \in \mathbb{N}$ s.t. $\lambda^{n} \in \mathbb{Q}$ for $\lambda \in \overline{\mathbb{Q}}$

Periodic Rational Solvable Loops

```
while ( }\tau\mathrm{ ) do
    [\begin{array}{c}{\mp@subsup{\mathcal{S}}{1}{}}\\{\vdots}\\{\mp@subsup{\mathcal{S}}{d}{}}\end{array}]\leftarrow[\begin{array}{ccc}{\mp@subsup{A}{1}{}}&{0}&{0}\\{0}&{\ddots}&{0}\\{0}&{0}&{\mp@subsup{A}{d}{}}\end{array}][\begin{array}{c}{\mp@subsup{\mathcal{S}}{1}{}}\\{\vdots}\\{\mp@subsup{\mathcal{S}}{d}{}}\end{array}]+[\begin{array}{c}{\mp@subsup{p}{1}{}}\\{\vdots}\\{\mp@subsup{p}{d}{}}\end{array}]
end
```

- τ built from $\wedge, \vee,(\neg, \ldots)$ and polynomial inequations over \mathbb{Z}
- Partition variables into blocks:

$$
\mathcal{S}_{1} \uplus \cdots \uplus \mathcal{S}_{d}
$$

- $A_{i} \in \mathbb{Z}^{\left|\mathcal{S}_{i}\right| \times\left|\mathcal{S}_{i}\right|}$ integer matrix
- $p_{i} \in \mathbb{Z}\left[\bigcup_{j<i} S_{j}\right]^{\left|\mathcal{S}_{i}\right|}$ polynomials
- Variable value depends at most linearly on its previous value.
- Prevent super-exponential growth: $\mathrm{x} \leftarrow \mathrm{x}^{2}$ (so the value is $x^{\left(2^{n}\right)}$)
- Non-linear dependencies only of variables from blocks with lower indices
- Solve recurrence to obtain closed form.
- Periodic rational: there exists $n \in \mathbb{N}$ s.t. $\lambda^{n} \in \mathbb{Q}$ for $\lambda \in \overline{\mathbb{Q}}$
$\sqrt{3}$ and i as $(\sqrt{3})^{2} \in \mathbb{Q}$ and $\mathrm{i}^{2} \in \mathbb{Q}$

Periodic Rational Solvable Loops

```
while ( }\tau\mathrm{ ) do
    [\begin{array}{c}{\mp@subsup{\mathcal{S}}{1}{}}\\{\vdots}\\{\mp@subsup{\mathcal{S}}{d}{}}\end{array}]\leftarrow[\begin{array}{ccc}{\mp@subsup{A}{1}{}}&{0}&{0}\\{0}&{\ddots}&{0}\\{0}&{0}&{\mp@subsup{A}{d}{}}\end{array}][\begin{array}{c}{\mp@subsup{\mathcal{S}}{1}{}}\\{\vdots}\\{\mp@subsup{\mathcal{S}}{d}{}}\end{array}]+[\begin{array}{c}{\mp@subsup{p}{1}{}}\\{\vdots}\\{\mp@subsup{p}{d}{}}\end{array}]
end
```

- τ built from $\wedge, \vee,(\neg, \ldots)$ and polynomial inequations over \mathbb{Z}
- Partition variables into blocks:

$$
\mathcal{S}_{1} \uplus \cdots \uplus \mathcal{S}_{d}
$$

- $A_{i} \in \mathbb{Z}^{\left|\mathcal{S}_{i}\right| \times\left|\mathcal{S}_{i}\right|}$ integer matrix
- $p_{i} \in \mathbb{Z}\left[\bigcup_{j<i} S_{j}\right]^{\left|\mathcal{S}_{i}\right|}$ polynomials
- Variable value depends at most linearly on its previous value.
- Prevent super-exponential growth: $\mathrm{x} \leftarrow \mathrm{x}^{2}$ (so the value is $x^{\left(2^{n}\right)}$)
- Non-linear dependencies only of variables from blocks with lower indices
- Solve recurrence to obtain closed form.
- Periodic rational: there exists $n \in \mathbb{N}$ s.t. $\lambda^{n} \in \mathbb{Q}$ for $\lambda \in \overline{\mathbb{Q}}$ $\sqrt{3}$ and i as $(\sqrt{3})^{2} \in \mathbb{Q}$ and $\mathrm{i}^{2} \in \mathbb{Q} \quad \checkmark \quad 2+3 \mathrm{i} \quad x$

Periodic Rational Solvable Loops

```
while ( }\tau\mathrm{ ) do
    [\begin{array}{c}{\mp@subsup{\mathcal{S}}{1}{}}\\{\vdots}\\{\mp@subsup{\mathcal{S}}{d}{}}\end{array}]\leftarrow[\begin{array}{ccc}{\mp@subsup{A}{1}{}}&{0}&{0}\\{0}&{\ddots}&{0}\\{0}&{0}&{\mp@subsup{A}{d}{}}\end{array}][\begin{array}{c}{\mp@subsup{\mathcal{S}}{1}{}}\\{\vdots}\\{\mp@subsup{\mathcal{S}}{d}{}}\end{array}]+[\begin{array}{c}{\mp@subsup{p}{1}{}}\\{\vdots}\\{\mp@subsup{p}{d}{}}\end{array}]
end
```

- τ built from $\wedge, \vee,(\neg, \ldots)$ and polynomial inequations over \mathbb{Z}
- Partition variables into blocks:

$$
\mathcal{S}_{1} \uplus \cdots \uplus \mathcal{S}_{d}
$$

- $A_{i} \in \mathbb{Z}^{\left|\mathcal{S}_{i}\right| \times\left|\mathcal{S}_{i}\right|}$ integer matrix with periodic rational eigenvalues
- $p_{i} \in \mathbb{Z}\left[\bigcup_{j<i} S_{j}\right]^{\left|\mathcal{S}_{i}\right|}$ polynomials
- Variable value depends at most linearly on its previous value.
- Prevent super-exponential growth: $\mathrm{x} \leftarrow \mathrm{x}^{2}$ (so the value is $x^{\left(2^{n}\right)}$)
- Non-linear dependencies only of variables from blocks with lower indices
- Solve recurrence to obtain closed form.
- Periodic rational: there exists $n \in \mathbb{N}$ s.t. $\lambda^{n} \in \mathbb{Q}$ for $\lambda \in \overline{\mathbb{Q}}$ $\sqrt{3}$ and i as $(\sqrt{3})^{2} \in \mathbb{Q}$ and $\mathrm{i}^{2} \in \mathbb{Q} \quad \checkmark \quad 2+3 \mathrm{i} \quad x$

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

Completeness: PRS Loops

- (Polynomial) time bounds are computable for all terminating prs loops.

Completeness: PRS Loops

- (Polynomial) time bounds are computable for all terminating prs loops.
- chain (unroll) loops accordingly to their period

Completeness: PRS Loops

- (Polynomial) time bounds are computable for all terminating prs loops.
- chain (unroll) loops accordingly to their period \rightsquigarrow integer eigenvalues

Completeness: PRS Loops

- (Polynomial) time bounds are computable for all terminating prs loops.
- chain (unroll) loops accordingly to their period \rightsquigarrow integer eigenvalues

$$
\begin{aligned}
& \text { while }\left(x_{1}>0\right) \text { do } \\
& \qquad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \leftarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & 2 \\
0 & 0 & -5 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{c}
-1 \\
x_{1}^{2} \\
0 \\
0
\end{array}\right] \\
& \text { end }
\end{aligned}
$$

Completeness: PRS Loops

- (Polynomial) time bounds are computable for all terminating prs loops.
- chain (unroll) loops accordingly to their period \rightsquigarrow integer eigenvalues

$$
\begin{aligned}
& \text { while }\left(x_{1}>0\right) \text { do } \\
& \qquad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \leftarrow\left[\begin{array}{llcc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & 2 \\
0 & 0 & -5 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{c}
-1 \\
x_{1}^{2} \\
0 \\
0
\end{array}\right] \\
& \text { end }
\end{aligned}
$$

Completeness: PRS Loops

- (Polynomial) time bounds are computable for all terminating prs loops.
- chain (unroll) loops accordingly to their period \rightsquigarrow integer eigenvalues

$$
\begin{aligned}
& \text { while }\left(x_{1}>0\right) \text { do } \\
& \qquad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \leftarrow\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & 2 \\
0 & 0 & -5 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{c}
-1 \\
x_{1}^{2} \\
0 \\
0
\end{array}\right] \\
& \text { end }
\end{aligned}
$$

Completeness: PRS Loops

- (Polynomial) time bounds are computable for all terminating prs loops.
- chain (unroll) loops accordingly to their period \rightsquigarrow integer eigenvalues
while $\left(x_{1}>0\right)$ do
$\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right] \leftarrow\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -5 & -3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]+\left[\begin{array}{c}-1 \\ x_{1}^{2} \\ 0 \\ 0\end{array}\right]$
end

Completeness: PRS Loops

- (Polynomial) time bounds are computable for all terminating prs loops.
- chain (unroll) loops accordingly to their period \rightsquigarrow integer eigenvalues
while $\left(x_{1}>0\right)$ do
$\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right] \leftarrow\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -5 & -3\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]+\left[\begin{array}{c}-1 \\ x_{1}^{2} \\ 0 \\ 0\end{array}\right]$
end

Completeness: PRS Loops

- (Polynomial) time bounds are computable for all terminating prs loops.
- chain (unroll) loops accordingly to their period \rightsquigarrow integer eigenvalues
while $\left(x_{1}>0\right)$ do
while $\left(x_{1}>0\right)$ do
$\left[\begin{array}{l}\mathrm{x}_{1} \\ \mathrm{x}_{2} \\ \mathrm{x}_{3} \\ \mathrm{x}_{4}\end{array}\right] \leftarrow\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -5 & -3\end{array}\right]\left[\begin{array}{l}\mathrm{x}_{1} \\ \mathrm{x}_{2} \\ \mathrm{x}_{3} \\ \mathrm{x}_{4}\end{array}\right]+\left[\begin{array}{c}-1 \\ \mathrm{x}_{1}^{2} \\ 0 \\ 0\end{array}\right]$
$\left[\begin{array}{l}\mathrm{x}_{1} \\ \mathrm{x}_{2} \\ \mathrm{x}_{3} \\ \mathrm{x}_{4}\end{array}\right] \leftarrow\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -5 & -3\end{array}\right]\left[\begin{array}{l}\mathrm{x}_{1} \\ \mathrm{x}_{2} \\ \mathrm{x}_{3} \\ \mathrm{x}_{4}\end{array}\right]+\left[\begin{array}{c}-1 \\ \mathrm{x}_{1}^{2} \\ 0 \\ 0\end{array}\right]$
end
end
while $\left(x_{1}>0\right)$ do

Completeness: PRS Loops

- (Polynomial) time bounds are computable for all terminating prs loops.
- chain (unroll) loops accordingly to their period \rightsquigarrow integer eigenvalues

- 1 has period 1
- i has period 2 as $\mathrm{i}^{2}=-1 \in \mathbb{Q}$
- -i has period 2 as $(-i)^{2}=-1 \in \mathbb{Q}$
\Rightarrow chain loop once

Completeness: PRS Loops

- (Polynomial) time bounds are computable for all terminating prs loops.
- chain (unroll) loops accordingly to their period \rightsquigarrow integer eigenvalues

$$
\begin{aligned}
& \text { while }\left(x_{1}>0\right) \text { do } \\
& \qquad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \leftarrow\left[\begin{array}{llcc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & 2 \\
0 & 0 & -5 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{c}
-1 \\
x_{1}^{2} \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

end

Completeness: PRS Loops

- (Polynomial) time bounds are computable for all terminating prs loops.
- chain (unroll) loops accordingly to their period \rightsquigarrow integer eigenvalues

$$
\begin{aligned}
& \text { while }\left(x_{1}>0\right) \text { do } \\
& \qquad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \leftarrow\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & 2 \\
0 & 0 & -5 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{c}
-1 \\
x_{1}^{2} \\
0 \\
0
\end{array}\right] \\
& \text { end }
\end{aligned}
$$

```
while ( }\mp@subsup{\textrm{x}}{1}{}>0\mathrm{ ) do
    [ (\begin{array}{l}{\mp@subsup{x}{1}{}}\\{\mp@subsup{x}{2}{}}\\{\mp@subsup{x}{3}{}}\\{\mp@subsup{x}{4}{}}\end{array}]\leftarrow[[\begin{array}{cccc}{1}&{0}&{0}&{0}\\{0}&{1}&{0}&{0}\\{0}&{0}&{-1}&{0}\\{0}&{0}&{0}&{-1}\end{array}][\begin{array}{l}{\mp@subsup{x}{1}{}}\\{\mp@subsup{x}{2}{}}\\{\mp@subsup{x}{3}{}}\\{\mp@subsup{x}{4}{}}\end{array}]+[\begin{array}{c}{[\begin{array}{c}{-2}\\{\mp@subsup{x}{1}{2}+(\mp@subsup{x}{1}{}-1\mp@subsup{)}{}{2}}\\{0}\\{0}\end{array}]}\end{array}]
end
```


Completeness: PRS Loops

- (Polynomial) time bounds are computable for all terminating prs loops.
- chain (unroll) loops accordingly to their period \rightsquigarrow integer eigenvalues

$$
\begin{aligned}
& \text { while }\left(x_{1}>0\right) \text { do } \\
& \qquad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \leftarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & 2 \\
0 & 0 & -5 & -3
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{c}
-1 \\
x_{1}^{2} \\
0 \\
0
\end{array}\right] \\
& \text { end }
\end{aligned}
$$

```
while ( }\mp@subsup{x}{1}{}>0\mathrm{ ) do
```

 \(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right] \leftarrow\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]+\left[\begin{array}{c}-2 \\ x_{1}^{2}+\left(x_{1}-1\right)^{2} \\ 0 \\ 0\end{array}\right]\)
 end

- 1 has period 1
- i has period 2 as $\mathrm{i}^{2}=-1 \in \mathbb{Q}$
- -i has period 2 as $(-i)^{2}=-1 \in \mathbb{Q}$
\Rightarrow chain loop once
- Prove termination for chained loops [SAS '20]
- co-NP-complete for linear arithmetic

Completeness: PRS Loops

- (Polynomial) time bounds are computable for all terminating prs loops.
- chain (unroll) loops accordingly to their period \rightsquigarrow integer eigenvalues

$$
\begin{aligned}
& \text { while }\left(x_{1}>0\right) \text { do } \\
& \qquad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \leftarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & 2 \\
0 & 0 & -5 & -3
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{c}
-1 \\
x_{1}^{2} \\
0 \\
0
\end{array}\right] \\
& \text { end }
\end{aligned}
$$

$$
\text { while }\left(x_{1}>0\right) \text { do }
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \leftarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{c}
-2 \\
x_{1}^{2}+\left(x_{1}-1\right)^{2} \\
0 \\
0
\end{array}\right]
$$

end

- 1 has period 1
- i has period 2 as $\mathrm{i}^{2}=-1 \in \mathbb{Q}$
- -i has period 2 as $(-\mathrm{i})^{2}=-1 \in \mathbb{Q}$
\Rightarrow chain loop once
- Prove termination for chained loops [SAS '20]
- co-NP-complete for linear arithmetic
- Find time bounds for terminating chained loops [LPAR '20]

Completeness: PRS Loops

- (Polynomial) time bounds are computable for all terminating prs loops.
- chain (unroll) loops accordingly to their period \rightsquigarrow integer eigenvalues

$$
\begin{aligned}
& \text { while }\left(x_{1}>0\right) \text { do } \\
& \qquad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \leftarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & 2 \\
0 & 0 & -5 & -3
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{c}
-1 \\
x_{1}^{2} \\
0 \\
0
\end{array}\right] \\
& \text { end }
\end{aligned}
$$

```
while ( }\mp@subsup{x}{1}{}>0\mathrm{ ) do
```

 \(\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right] \leftarrow\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]+\left[\begin{array}{c}-2 \\ x_{1}^{2}+\left(x_{1}-1\right)^{2} \\ 0 \\ 0\end{array}\right]\)
 end

- 1 has period 1
- i has period 2 as $\mathrm{i}^{2}=-1 \in \mathbb{Q}$
- -i has period 2 as $(-i)^{2}=-1 \in \mathbb{Q}$
\Rightarrow chain loop once
- Prove termination for chained loops [SAS '20]
- co-NP-complete for linear arithmetic
- Find time bounds for terminating chained loops [LPAR '20]
- Derive time bound for original loops

Completeness: PRS Loops

- Closed forms are computable for all prs loops.

Completeness: PRS Loops

- Closed forms are computable for all prs loops.
- Polynomial time bounds are computable for all terminating prs loops. [LPAR '20]

Completeness: PRS Loops

- Closed forms are computable for all prs loops.
- Polynomial time bounds are computable for all terminating prs loops. [LPAR '20]
- Size bounds are computable for all terminating prs loops.

Completeness: PRS Loops

- Closed forms are computable for all prs loops.
- Polynomial time bounds are computable for all terminating prs loops. [LPAR '20]
- Size bounds are computable for all terminating prs loops.
- Polynomial size bounds are computable for all unit prs loops.

Completeness: PRS Loops

- Closed forms are computable for all prs loops.
- Polynomial time bounds are computable for all terminating prs loops. [LPAR '20]
- Size bounds are computable for all terminating prs loops.
- Polynomial size bounds are computable for all unit prs loops.
- unit: for all eigenvalues $\lambda \in \overline{\mathbb{Q}}$ we have $|\lambda| \leq 1$

Completeness: PRS Loops

- Closed forms are computable for all prs loops.
- Polynomial time bounds are computable for all terminating prs loops. [LPAR '20]
- Size bounds are computable for all terminating prs loops.
- Polynomial size bounds are computable for all unit prs loops.
- unit: for all eigenvalues $\lambda \in \overline{\mathbb{Q}}$ we have $|\lambda| \leq 1$

$$
\begin{aligned}
& \text { while }\left(x_{1}>0\right) \text { do } \\
& \qquad\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right] \leftarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 3 & 2 \\
0 & 0 & -5 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]+\left[\begin{array}{c}
-1 \\
x_{1}^{2} \\
0 \\
0
\end{array}\right] \\
& \text { end }
\end{aligned}
$$

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

Size Complexity of Integer Programs

Goal: Infer size and time bounds for "real-world" programs

$$
\begin{aligned}
& \text { while }\left(x_{1}>0\right) \text { do } \\
& \qquad\left[\begin{array}{l}
x_{1} \\
x_{3} \\
x_{4}
\end{array}\right] \leftarrow\left[\begin{array}{c}
x_{1}-1 \\
3 x_{3}+2 x_{4} \\
-5 x_{3}+-3 x_{4}
\end{array}\right] \\
& \text { end }
\end{aligned}
$$

Size Complexity of Integer Programs

Goal: Infer size and time bounds for "real-world" programs

$$
\begin{aligned}
& \text { while }\left(x_{1}>0\right) \text { do } \\
& \qquad\left[\begin{array}{l}
x_{1} \\
x_{3} \\
x_{4}
\end{array}\right] \leftarrow\left[\begin{array}{c}
x_{1}-1 \\
3 x_{3}+2 x_{4} \\
-5 x_{3}+-3 x_{4}
\end{array}\right] \\
& \text { end } \\
& \text { while }\left(x_{3}>0\right) \text { do } \\
& \qquad\left[\begin{array}{c}
x_{3} \\
y
\end{array}\right] \leftarrow\left[\begin{array}{c}
x_{3}-1 \\
y+1
\end{array}\right] \\
& \text { end }
\end{aligned}
$$

Size Complexity of Integer Programs

Goal: Infer size and time bounds for "real-world" programs

$$
\begin{aligned}
& \text { while }\left(x_{1}>0\right) \text { do } \\
& \qquad\left[\begin{array}{l}
x_{1} \\
x_{3} \\
x_{4}
\end{array}\right] \leftarrow\left[\begin{array}{c}
x_{1}-1 \\
3 x_{3}+2 x_{4} \\
-5 x_{3}+-3 x_{4}
\end{array}\right] \\
& \text { end } \\
& \text { while }\left(x_{3}>0\right) \text { do } \\
& \qquad\left[\begin{array}{c}
x_{3} \\
y
\end{array}\right] \leftarrow\left[\begin{array}{c}
x_{3}-1 \\
y+1
\end{array}\right] \\
& \text { end }
\end{aligned}
$$

Size Complexity of Integer Programs

Goal: Infer size and time bounds for "real-world" programs

$$
\begin{aligned}
& \text { While }\left(x_{1}>0\right) \text { do } \\
& \qquad\left[\begin{array}{l}
x_{1} \\
x_{3} \\
x_{4}
\end{array}\right] \leftarrow\left[\begin{array}{c}
x_{1}-1 \\
3 x_{3}+2 x_{4} \\
-5 x_{3}+-3 x_{4}
\end{array}\right] \\
& \text { end } \\
& \text { while }\left(x_{3}>0\right) \text { do } \\
& \qquad\left[\begin{array}{c}
x_{3} \\
y
\end{array}\right] \leftarrow\left[\begin{array}{c}
x_{3}-1 \\
y+1
\end{array}\right] \\
& \text { end }
\end{aligned}
$$

- Size of y after second loop:
- Idea: Analyze different subprograms and combine results

Size Complexity of Integer Programs

Goal: Infer size and time bounds for "real-world" programs

- Size of y after second loop:
- Idea: Analyze different subprograms and combine results

Size Complexity of Integer Programs

Goal: Infer size and time bounds for "real-world" programs

- Size of y after second loop:
- Idea: Analyze different subprograms and combine results
- y "locally" has size $y+x_{3}$

Size Complexity of Integer Programs

Goal: Infer size and time bounds for "real-world" programs

- Size of y after second loop:
- Idea: Analyze different subprograms and combine results
- y "locally" has size $y+x_{3}$

Size of $\mathrm{y}: ~ y+x_{3}$

Size Complexity of Integer Programs

Goal: Infer size and time bounds for "real-world" programs

```
while ( }\mp@subsup{\textrm{x}}{1}{}>0\mathrm{ ) do
    [ [ 
end
while ( }\mp@subsup{x}{3}{}>0\mathrm{ ) do
    [\begin{array}{c}{\mp@subsup{x}{3}{}}\\{y}\end{array}]\leftarrow[\begin{array}{c}{\mp@subsup{x}{3}{}-1}\\{y+1}\end{array}]
end
```

- Size of y after second loop:
- Idea: Analyze different subprograms and combine results
- y "locally" has size $y+x_{3}$
- Respect size of variables:

Size of $\mathrm{y}: y+x_{3}$

Size Complexity of Integer Programs

Goal: Infer size and time bounds for "real-world" programs

```
while ( }\mp@subsup{\textrm{x}}{1}{}>0\mathrm{ ) do
    [ ( 
end
while ( }\mp@subsup{x}{3}{}>0\mathrm{ ) do
    [\begin{array}{c}{\mp@subsup{x}{3}{}}\\{y}\end{array}]\leftarrow[\begin{array}{c}{\mp@subsup{x}{3}{}-1}\\{y+1}\end{array}]
end
```

- Size of y after second loop:
- Idea: Analyze different subprograms and combine results
- y "locally" has size $y+x_{3}$
- Respect size of variables:
- x_{3} is size bounded by $4 \cdot x_{3}+2 \cdot x_{4}$.

Size of $\mathrm{y}: ~ y+x_{3}$

Size Complexity of Integer Programs

Goal: Infer size and time bounds for "real-world" programs

```
while ( }\mp@subsup{\textrm{x}}{1}{}>0\mathrm{ ) do
    [ ( 
end
while ( }\mp@subsup{x}{3}{}>0\mathrm{ ) do
    [\begin{array}{c}{\mp@subsup{x}{3}{}}\\{y}\end{array}]\leftarrow[\begin{array}{c}{\mp@subsup{x}{3}{}-1}\\{y+1}\end{array}]
end
```

- Size of y after second loop:
- Idea: Analyze different subprograms and combine results
- y "locally" has size $y+x_{3}$
- Respect size of variables:
- x_{3} is size bounded by $4 \cdot x_{3}+2 \cdot x_{4}$.

Size of $\mathrm{y}: y+x_{3}\left[x_{3} / \operatorname{size}\left(x_{3}\right)\right]$

Size Complexity of Integer Programs

Goal: Infer size and time bounds for "real-world" programs

```
while ( }\mp@subsup{\textrm{x}}{1}{}>0\mathrm{ ) do
    [ ( 
end
while ( }\mp@subsup{x}{3}{}>0\mathrm{ ) do
    [\begin{array}{c}{\mp@subsup{x}{3}{}}\\{y}\end{array}]\leftarrow[\begin{array}{c}{\mp@subsup{x}{3}{}-1}\\{y+1}\end{array}]
end
```

- Size of y after second loop:
- Idea: Analyze different subprograms and combine results
- y "locally" has size $y+x_{3}$
- Respect size of variables:
- x_{3} is size bounded by $4 \cdot x_{3}+2 \cdot x_{4}$.

Size of $\mathrm{y}: ~ y+4 \cdot x_{3}+2 \cdot x_{4}$

Time Complexity of Integer Programs

Goal: Infer size and time bounds for "real-world" programs

Time Complexity of Integer Programs

Goal: Infer size and time bounds for "real-world" programs

```
L
L2;
```


Time Complexity of Integer Programs

Goal: Infer size and time bounds for "real-world" programs

```
L
L2;
// y has size y+4\cdot\mp@subsup{x}{3}{}+2\cdot\mp@subsup{x}{4}{}
```


Time Complexity of Integer Programs

Goal: Infer size and time bounds for "real-world" programs

```
L
L2;
// y has size y+4\cdot\mp@subsup{x}{3}{}+2\cdot\mp@subsup{x}{4}{}
while (y > 0) do
    y]}\leftarrow[y-1
    end
```


Time Complexity of Integer Programs

Goal: Infer size and time bounds for "real-world" programs

```
L_;
L2;
// y has size y + 4 \cdot }\mp@subsup{x}{3}{}+2\cdot\mp@subsup{x}{4}{
while (y > 0) do
    [y]}\leftarrow[y-1
    end
```

- How often do we execute the loop?

Time Complexity of Integer Programs

Goal: Infer size and time bounds for "real-world" programs

```
L_;
L2;
// y has size y+4\cdot\mp@subsup{x}{3}{}+2\cdot\mp@subsup{x}{4}{}
    while (y > 0) do
        [y]}\leftarrow[y-1
    end
```

- How often do we execute the loop?
- Idea: Analyze different subprograms and combine results

Time Complexity of Integer Programs

Goal: Infer size and time bounds for "real-world" programs
while (y > 0) do
while (y > 0) do
y]}\leftarrow[y-1
y]}\leftarrow[y-1
end
end

- How often do we execute the loop?
- Idea: Analyze different subprograms and combine results

Time Complexity of Integer Programs

Goal: Infer size and time bounds for "real-world" programs

- How often do we execute the loop?
- Idea: Analyze different subprograms and combine results
- loop is "locally" executed y times

Time Complexity of Integer Programs

Goal: Infer size and time bounds for "real-world" programs

- How often do we execute the loop?
- Idea: Analyze different subprograms and combine results
- loop is "locally" executed y times

Number of loop executions: y

Time Complexity of Integer Programs

Goal: Infer size and time bounds for "real-world" programs

```
L_;
L
// y has size y+4\cdot 和 +2\cdot }\mp@subsup{x}{4}{
    while (y > 0) do
        [y]}\leftarrow[y-1
    end
```

- How often do we execute the loop?
- Idea: Analyze different subprograms and combine results
- loop is "locally" executed y times
- Respect size of variables:

Number of loop executions: y

Time Complexity of Integer Programs

Goal: Infer size and time bounds for "real-world" programs

```
L_;
L
// y has size y+4\cdot 和 +2\cdot }\mp@subsup{x}{4}{
    while (y > 0) do
        [y]}\leftarrow[y-1
    end
```

- How often do we execute the loop?
- Idea: Analyze different subprograms and combine results
- loop is "locally" executed y times
- Respect size of variables:
- y is size bounded by $y+4 \cdot x_{3}+2 \cdot x_{4}$

Number of loop executions: y

Time Complexity of Integer Programs

Goal: Infer size and time bounds for "real-world" programs

```
L_;
L
// y has size y+4\cdot 和 +2\cdot }\mp@subsup{x}{4}{
    while (y > 0) do
        [y]}\leftarrow[y-1
    end
```

- How often do we execute the loop?
- Idea: Analyze different subprograms and combine results
- loop is "locally" executed y times
- Respect size of variables:
- y is size bounded by $y+4 \cdot x_{3}+2 \cdot x_{4}$

Number of loop executions: $y[y / \operatorname{size}(y)]$

Time Complexity of Integer Programs

Goal: Infer size and time bounds for "real-world" programs

```
L_;
L
// y has size y+4\cdot 和 +2\cdot }\mp@subsup{x}{4}{
    while (y > 0) do
        [y]}\leftarrow[y-1
    end
```

- How often do we execute the loop?
- Idea: Analyze different subprograms and combine results
- loop is "locally" executed y times
- Respect size of variables:
- y is size bounded by $y+4 \cdot x_{3}+2 \cdot x_{4}$

Number of loop executions: $y+4 \cdot x_{3}+2 \cdot x_{4}$

Time Complexity of Integer Programs

Goal: Infer size and time bounds for "real-world" programs

```
L_;
L2;
// y has size }y+4\cdot\mp@subsup{x}{3}{}+2\cdot\mp@subsup{x}{4}{
    while (y > 0) do
    [y]}\leftarrow[y-1
    end
```

- How often do we execute the loop?
- Idea: Analyze different subprograms and combine results
- loop is "locally" executed y times
- Respect size of variables:
- y is size bounded by $y+4 \cdot x_{3}+2 \cdot x_{4}$
- How many times do we start to evaluate the loop?

Number of loop executions: $y+4 \cdot x_{3}+2 \cdot x_{4}$

Time Complexity of Integer Programs

Goal: Infer size and time bounds for "real-world" programs

```
L_;
L2;
// y has size }y+4\cdot\mp@subsup{x}{3}{}+2\cdot\mp@subsup{x}{4}{
    while (y > 0) do
    [y]}\leftarrow[y-1
    end
```

- How often do we execute the loop?
- Idea: Analyze different subprograms and combine results
- loop is "locally" executed y times
- Respect size of variables:
- y is size bounded by $y+4 \cdot x_{3}+2 \cdot x_{4}$
- How many times do we start to evaluate the loop?

Number of loop executions: $1 \cdot\left(y+4 \cdot x_{3}+2 \cdot x_{4}\right)$

Time Complexity of Integer Programs

Goal: Infer size and time bounds for "real-world" programs

```
L_;
L2;
// y has size }y+4\cdot\mp@subsup{x}{3}{}+2\cdot\mp@subsup{x}{4}{
    while (y > 0) do
    [y]}\leftarrow[y-1
    end
```

- How often do we execute the loop?
- Idea: Analyze different subprograms and combine results
- loop is "locally" executed y times
- Respect size of variables:
- y is size bounded by $y+4 \cdot x_{3}+2 \cdot x_{4}$
- How many times do we start to evaluate the loop?

Number of loop executions: $y+4 \cdot x_{3}+2 \cdot x_{4}$

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

Completeness: Simple Integer Programs

- Simple Integer Program:

Completeness: Simple Integer Programs

- Simple Integer Program:
- No nested loops

Completeness: Simple Integer Programs

- Simple Integer Program:
- No nested loops

Completeness: Simple Integer Programs

- Simple Integer Program:
- No nested loops
- Solve loops in topological order:

Completeness: Simple Integer Programs

- Simple Integer Program:
- No nested loops
- Solve loops in topological order:

Completeness: Simple Integer Programs

- Simple Integer Program:
- No nested loops
- Solve loops in topological order:
- Infer time bound by considering previous size bounds.

Completeness: Simple Integer Programs

- Simple Integer Program:
- No nested loops
- Solve loops in topological order:
- Infer time bound by considering previous size bounds.
- Compute size bounds for loops.

Completeness: Simple Integer Programs

- Simple Integer Program:
- No nested loops
- Solve loops in topological order:
- Infer time bound by considering previous size bounds.
- Compute size bounds for loops.
- Propagate size bounds to subsequent loops.

Completeness: Simple Integer Programs

- Simple Integer Program:
- No nested loops
- Solve loops in topological order:
- Infer time bound by considering previous size bounds.
- Compute size bounds for loops.
- Propagate size bounds to subsequent loops.

Completeness: Simple Integer Programs

- Simple Integer Program:
- No nested loops
- Solve loops in topological order:
- Infer time bound by considering previous size bounds.
- Compute size bounds for loops.
- Propagate size bounds to subsequent loops.

Completeness: Simple Integer Programs

- Simple Integer Program:
- No nested loops
- Solve loops in topological order:
- Infer time bound by considering previous size bounds.
- Compute size bounds for loops.
- Propagate size bounds to subsequent loops.

Completeness: Simple Integer Programs

- Simple Integer Program:
- No nested loops
- Solve loops in topological order:
- Infer time bound by considering previous size bounds.
- Compute size bounds for loops.
- Propagate size bounds to subsequent loops.

Completeness: Simple Integer Programs

- Simple Integer Program:
- No nested loops
- Solve loops in topological order:
- Infer time bound by considering previous size bounds.
- Compute size bounds for loops.
- Propagate size bounds to subsequent loops.

Completeness: Simple Integer Programs

- Simple Integer Program:
- No nested loops
- Solve loops in topological order:
- Infer time bound by considering previous size bounds.
- Compute size bounds for loops.
- Propagate size bounds to subsequent loops.

Completeness: Simple Integer Programs

- Simple Integer Program:
- No nested loops
- Solve loops in topological order:
- Infer time bound by considering previous size bounds.
- Compute size bounds for loops.
- Propagate size bounds to subsequent loops.

Completeness: Simple Integer Programs

- Simple Integer Program:
- No nested loops
- Solve loops in topological order:
- Infer time bound by considering previous size bounds.
- Compute size bounds for loops.
- Propagate size bounds to subsequent loops.

Completeness: Simple Integer Programs

- Simple Integer Program:
- No nested loops
- Solve loops in topological order:
- Infer time bound by considering previous size bounds.
- Compute size bounds for loops.
- Propagate size bounds to subsequent loops.

- Polynomial size and time bounds are computable if all loops are terminating unit prs loops.

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

Evaluation of our Implementation in KoAT2

- C_Complexity consisting of 519 (mainly linear) benchmarks from TPDB

	$\mathcal{O}(1)$	$\mathcal{O}(n)$	$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}\left(n^{>2}\right)$	$\mathcal{O}($ EXP $)$	$<\infty$	AVG(s)
Loopus	17	171	50	6	0	244	0.40
KoAT1	25	170	74	12	8	289	0.96
CoFloCo	22	197	66	5	0	290	0.59
MaxCore	23	220	67	7	0	317	1.96

- KoAT1: original KoAT implementation [TOPLAS' 16]

Evaluation of our Implementation in KoAT2

- C_Complexity consisting of 519 (mainly linear) benchmarks from TPDB

	$\mathcal{O}(1)$	$\mathcal{O}(n)$	$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}\left(n^{>2}\right)$	$\mathcal{O}($ EXP $)$	$<\infty$	AVG(s)
Loopus	17	171	50	6	0	244	0.40
KoAT1	25	170	74	12	8	289	0.96
CoFloCo	22	197	66	5	0	290	0.59
MaxCore	23	220	67	7	0	317	1.96
KoAT2	26	232	70	15	5	348	8.29

- KoAT1: original KoAT implementation [TOPLAS' 16]
- KoAT2: reimplementation of KoAT1 [RH '22] + [IJCAR '22]

Evaluation of our Implementation in KoAT2

- C_Complexity consisting of 519 (mainly linear) benchmarks from TPDB

	$\mathcal{O}(1)$	$\mathcal{O}(n)$	$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}\left(n^{>2}\right)$	$\mathcal{O}($ EXP $)$	$<\infty$	AVG(s)
Loopus	17	171	50	6	0	244	0.40
KoAT1	25	170	74	12	8	289	0.96
CoFloCo	22	197	66	5	0	290	0.59
MaxCore	23	220	67	7	0	317	1.96
KoAT2	26	232	70	15	5	348	8.29
KoAT2 + SIZE	26	233	71	25	3	358	9.97

- KoAT1: original KoAT implementation [TOPLAS' 16]
- KoAT2: reimplementation of KoAT1 [RH '22] + [IJCAR '22]

Evaluation of our Implementation in KoAT2

- C_Complexity consisting of 519 (mainly linear) benchmarks from TPDB

	$\mathcal{O}(1)$	$\mathcal{O}(n)$	$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}\left(n^{>2}\right)$	$\mathcal{O}($ EXP $)$	$<\infty$	AVG(s)
Loopus	17	171	50	6	0	244	0.40
KoAT1	25	170	74	12	8	289	0.96
CoFloCo	22	197	66	5	0	290	0.59
MaxCore	23	220	67	7	0	317	1.96
KoAT2	26	232	70	15	5	348	8.29
KoAT2 + SIZE	26	233	71	25	3	358	9.97

- KoAT1: original KoAT implementation [TOPLAS' 16]
- KoAT2: reimplementation of KoAT1 [RH '22] + [IJCAR '22]
- At most 386 benchmarks might terminate

Evaluation of our Implementation in KoAT2

- C_Complexity consisting of 519 (mainly linear) benchmarks from TPDB

	$\mathcal{O}(1)$	$\mathcal{O}(n)$	$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}\left(n^{>2}\right)$	$\mathcal{O}(E X P)$	$<\infty$	AVG(s)	succ. rate
Loopus	17	171	50	6	0	244	0.40	62%
KoAT1	25	170	74	12	8	289	0.96	74%
CoFloCo	22	197	66	5	0	290	0.59	75%
MaxCore	23	220	67	7	0	317	1.96	80%
KoAT2	26	232	70	15	5	348	8.29	85%
KoAT2 + SIZE	26	233	71	25	3	358	9.97	89%

- KoAT1: original KoAT implementation [TOPLAS' 16]
- KoAT2: reimplementation of KoAT1 [RH '22] + [IJCAR '22]
- At most 386 benchmarks might terminate

Evaluation of our Implementation in KoAT2

- C_Complexity consisting of 519 (mainly linear) benchmarks from TPDB

	$\mathcal{O}(1)$	$\mathcal{O}(n)$	$\mathcal{O}\left(n^{2}\right)$	$\mathcal{O}\left(n^{>2}\right)$	$\mathcal{O}(E X P)$	$<\infty$	AVG(s)	succ. rate
Loopus	17	171	50	6	0	244	0.40	62%
KoAT1	25	170	74	12	8	289	0.96	74%
CoFloCo	22	197	66	5	0	290	0.59	75%
MaxCore	23	220	67	7	0	317	1.96	80%
KoAT2	26	232	70	15	5	348	8.29	85%
KoAT2 + SIZE	26	233	71	25	3	358	9.97	89%

- KoAT1: original KoAT implementation [TOPLAS' 16]
- KoAT2: reimplementation of KoAT1 [RH '22] + [IJCAR '22]
- At most 386 benchmarks might terminate
- KoAT2 + SIZE solves 89% of benchmarks which might terminate.

Conclusion

- Conclusion

Conclusion

- Conclusion
- Introduced modular approach for complexity analysis combining

Conclusion

- Conclusion
- Introduced modular approach for complexity analysis combining
- Procedure to infer size bounds by closed forms

Conclusion

- Conclusion
- Introduced modular approach for complexity analysis combining
- Procedure to infer size bounds by closed - time bound computations forms

Conclusion

- Conclusion
- Introduced modular approach for complexity analysis combining
- Procedure to infer size bounds by closed - time bound computations forms
- Handle loops with non-linear arithmetic

Conclusion

- Conclusion
- Introduced modular approach for complexity analysis combining
- Procedure to infer size bounds by closed - time bound computations forms
- Handle loops with non-linear arithmetic
- Complete for a large class of integer programs

Conclusion

- Conclusion
- Introduced modular approach for complexity analysis combining
- Procedure to infer size bounds by closed - time bound computations forms
- Handle loops with non-linear arithmetic
- Complete for a large class of integer programs
- KoAT2 outperforms other state-of-the-art tools

Conclusion

- Conclusion
- Introduced modular approach for complexity analysis combining
- Procedure to infer size bounds by closed - time bound computations forms
- Handle loops with non-linear arithmetic
- Complete for a large class of integer programs
- KoAT2 outperforms other state-of-the-art tools
https://koat.verify.rwth-aachen.de/size

Conclusion

- Conclusion
- Introduced modular approach for complexity analysis combining
- Procedure to infer size bounds by closed - time bound computations forms
- Handle loops with non-linear arithmetic
- Complete for a large class of integer programs
- KoAT2 outperforms other state-of-the-art tools
https://koat.verify.rwth-aachen.de/size

Conclusion

- Conclusion
- Introduced modular approach for complexity analysis combining
- Procedure to infer size bounds by closed - time bound computations forms
- Handle loops with non-linear arithmetic
- Complete for a large class of integer programs
- KoAT2 outperforms other state-of-the-art tools
https://koat.verify.rwth-aachen.de/size

Thank You!

