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Motivation

Goal: Infer (upper) size and time bounds for “real-world” programs

while (x1 > 0) do[
x1
x2

]
←

[
x1 − 1
x2 + x21

]
end

▶ How large are the variables?
▶ How often do we execute the second loop?

• Maximal “size” of x2 times
• Existing tools usually fail with non-linear
arithmetic.

• Can compute non-linear size and time bounds for
prs loops.

• Approach is complete for a large class of
programs.

▶ Size bound computations are implemented in the automatic complexity
analysis tool KoAT
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Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

loops

size bounds

time bounds
completeness completeness

size bounds time bounds
completeness completeness

Lifting
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Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x1 and x2

while (x1 > 0) do[
x1
x2

]
←

[
x1 − 1
x2 + x21

]
end

▶ Compute closed form for x1.
▶ Over-approximate closed form to non-negative,
weakly monotonic increasing expression.

▶ Replace n by an over-approximation of the
runtime.

▶ Closed form: clnx1 = x1 − n

▶ Over-approximation: x1 + n

▶ Size bound:

x1 + x1

= 2 · x1
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Periodic Rational Solvable Loops

while (τ) do

S1...
Sd

←
A1 0 0

0
. . . 0

0 0 Ad


S1...
Sd

+
p1...
pd



end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ Partition variables into blocks:
S1 ⊎ · · · ⊎ Sd

▶ Ai ∈ Z|Si|×|Si| integer matrix

with
periodic rational eigenvalues

▶ pi ∈ Z[
∪

j<i Sj]
|Si| polynomials

▶ Variable value depends at most linearly on its previous value.

• Prevent super-exponential growth: x← x2 (so the value is x(2
n))

▶ Non-linear dependencies only of variables from blocks with lower indices
▶ Solve recurrence to obtain closed form.
▶ Periodic rational: there exists n ∈ N s.t. λn ∈ Q for λ ∈ Q

√
3 and i as (

√
3)2 ∈ Q and i2 ∈ Q ✓ 2 + 3i 7
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Closed Forms: PRS Loops

▶ Closed forms are computable for all prs loops.

• poly-exponential expressions:

∑
j αj · naj · bnj with αj ∈ Q[x1, . . . , xd], aj ∈ N and bj ∈ Q

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3



x1
x2
x3
x4

+

−1
x21
0
0


end

▶ closed form for x2:

x2+n·(16+x1+x21−x1 ·n− n
2+

n2

3 )

▶ closed form for x3:

1
2 · α · (−i)

n + 1
2 · α · i

n for a linear
polynomial α.

▶ How to handle algebraic Q \Q numbers?
▶When do we have polynomial size bounds?

• When are (polynomial) time bounds computable?
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Size Bounds by Closed Forms

Goal: Infer (absolute) size bound for x3

while (x1 > 0) dox1x3
x4

←
 x1 − 1

3x3 + 2x4
−5x3 − 3x4


end

▶ Compute closed form for x3.
▶ Over-approximate closed form to non-negative,
weakly monotonic increasing expression.

▶ Replace n by an over-approximation of the
runtime.

▶ Closed form: clnx3 =
1
2 · α · (−i)

n + 1
2 · α · i

n

▶ Over-approximation:

1
2 · |α| · (| − i|)n + 1

2 · |α| · |i|
n

▶ Size bound: |α| = 4 · x3 + 2 · x4
▶ How to handle algebraic Q \Q numbers?

Take absolute value!

▶When do we have polynomial size bounds?

• All eigenvalues λ are unit: |λ| ≤ 1

• When are (polynomial) time bounds computable?
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Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

prs loops

size bounds time bound
completeness completeness

simple integer programs

size bounds time bounds
completeness completeness

Lifting
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Periodic Rational Solvable Loops

while (τ) doS1...
Sd

←
A1 0 0

0
. . . 0

0 0 Ad


S1...
Sd

+
p1...
pd


end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ Partition variables into blocks:
S1 ⊎ · · · ⊎ Sd

▶ Ai ∈ Z|Si|×|Si| integer matrix

with
periodic rational eigenvalues

▶ pi ∈ Z[
∪

j<i Sj]
|Si| polynomials

▶ Variable value depends at most linearly on its previous value.
• Prevent super-exponential growth: x← x2 (so the value is x(2

n))
▶ Non-linear dependencies only of variables from blocks with lower indices
▶ Solve recurrence to obtain closed form.

▶ Periodic rational: there exists n ∈ N s.t. λn ∈ Q for λ ∈ Q

√
3 and i as (

√
3)2 ∈ Q and i2 ∈ Q ✓ 2 + 3i 7

10 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2



Periodic Rational Solvable Loops

while (τ) doS1...
Sd

←
A1 0 0

0
. . . 0

0 0 Ad


S1...
Sd

+
p1...
pd


end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ Partition variables into blocks:
S1 ⊎ · · · ⊎ Sd

▶ Ai ∈ Z|Si|×|Si| integer matrix

with
periodic rational eigenvalues

▶ pi ∈ Z[
∪

j<i Sj]
|Si| polynomials

▶ Variable value depends at most linearly on its previous value.
• Prevent super-exponential growth: x← x2 (so the value is x(2

n))
▶ Non-linear dependencies only of variables from blocks with lower indices
▶ Solve recurrence to obtain closed form.
▶ Periodic rational: there exists n ∈ N s.t. λn ∈ Q for λ ∈ Q

√
3 and i as (

√
3)2 ∈ Q and i2 ∈ Q ✓ 2 + 3i 7

10 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2



Periodic Rational Solvable Loops

while (τ) doS1...
Sd

←
A1 0 0

0
. . . 0

0 0 Ad


S1...
Sd

+
p1...
pd


end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ Partition variables into blocks:
S1 ⊎ · · · ⊎ Sd

▶ Ai ∈ Z|Si|×|Si| integer matrix

with
periodic rational eigenvalues

▶ pi ∈ Z[
∪

j<i Sj]
|Si| polynomials

▶ Variable value depends at most linearly on its previous value.
• Prevent super-exponential growth: x← x2 (so the value is x(2

n))
▶ Non-linear dependencies only of variables from blocks with lower indices
▶ Solve recurrence to obtain closed form.
▶ Periodic rational: there exists n ∈ N s.t. λn ∈ Q for λ ∈ Q√

3 and i as (
√
3)2 ∈ Q and i2 ∈ Q ✓

2 + 3i 7

10 of 21 FroCoS ’23
Nils Lommen and Jürgen Giesl
RWTH Aachen University – LuFGi2



Periodic Rational Solvable Loops

while (τ) doS1...
Sd

←
A1 0 0

0
. . . 0

0 0 Ad


S1...
Sd

+
p1...
pd


end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ Partition variables into blocks:
S1 ⊎ · · · ⊎ Sd

▶ Ai ∈ Z|Si|×|Si| integer matrix

with
periodic rational eigenvalues

▶ pi ∈ Z[
∪

j<i Sj]
|Si| polynomials

▶ Variable value depends at most linearly on its previous value.
• Prevent super-exponential growth: x← x2 (so the value is x(2

n))
▶ Non-linear dependencies only of variables from blocks with lower indices
▶ Solve recurrence to obtain closed form.
▶ Periodic rational: there exists n ∈ N s.t. λn ∈ Q for λ ∈ Q√

3 and i as (
√
3)2 ∈ Q and i2 ∈ Q ✓ 2 + 3i 7
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Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

prs loops

size bounds time bounds
completeness completeness

simple integer programs

size bounds time bounds
completeness completeness

Lifting
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Completeness: PRS Loops

▶ (Polynomial) time bounds are computable for all terminating prs loops.

• chain (unroll) loops accordingly to their period

⇝ integer eigenvalues

while (x1 > 0) do
x1
x2
x3
x4

←

1 0 0 0
0 1 0 0
0 0 3 2
0 0 −5 −3



x1
x2
x3
x4

+

−1
x21
0
0


end

▶ 1 has period 1

▶ i has period 2 as i2 = −1 ∈ Q
▶ −i has period 2 as(−i)2 = −1 ∈ Q

⇒ chain loop once

while (x1 > 0) do

x1
x2
x3
x4

←


1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −1




x1
x2
x3
x4

+


−2
x21 + (x1 − 1)2

0
0


end

▶ Prove termination for
chained loops [SAS ’20]
• co-NP-complete for
linear arithmetic

▶ Find time bounds for
terminating chained
loops [LPAR ’20]

▶ Derive time bound for
original loops
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Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

prs loops

size bounds time bounds
completeness completeness

simple integer programs

size bounds time bounds
completeness completeness

Lifting
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Size Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

while (x1 > 0) dox1x3
x4

←
 x1 − 1

3x3 + 2x4
−5x3 +−3x4


end

while (x3 > 0) do[
x3
y

]
←

[
x3 − 1
y + 1

]
end

▶ Size of y after second loop:
▶ Idea: Analyze different subprograms
and combine results

• y “locally” has size y + x3

▶ Respect size of variables:

• x3 is size bounded by 4 · x3 + 2 · x4.

Size of y:

y + x3y + x3 [x3/size(x3)]y + 4 · x3 + 2 · x4
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Time Complexity of Integer Programs

Goal: Infer size and time bounds for “real-world“ programs

L1;
L2;
// y has size y + 4 · x3 + 2 · x4
while (y > 0) do[

y
]
←

[
y− 1

]
end

▶ How often do we execute the loop?
▶ Idea: Analyze different subprograms
and combine results

• loop is “locally” executed y times

▶ Respect size of variables:

• y is size bounded by y + 4 · x3 + 2 · x4

▶ How many times do we start to
evaluate the loop?

Number of loop executions:

yy [y/size(y)]y + 4 · x3 + 2 · x41 · (y + 4 · x3 + 2 · x4)
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prs loops

size bounds time bounds
completeness completeness

simple integer programs
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Completeness: Simple Integer Programs

▶ Simple Integer Program:

• No nested loops
▶ Solve loops in topological order:

• Infer time bound by considering previous size
bounds.

• Compute size bounds for loops.
• Propagate size bounds to subsequent loops.

L1 L2

L3

L4

▶ Polynomial size and time bounds are computable if all loops are
terminating unit prs loops.
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Overview

Goal: Infer (upper) size and time bounds for “real-world” programs

prs loops

size bounds time bounds
completeness completeness

simple integer programs

size bounds time bounds
completeness completeness

Lifting

accumulated
size bounds
[TOPLAS ’16]

ranking
functions
[RH ’22]
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Evaluation of our Implementation in KoAT2

▶ C_Complexity consisting of 519 (mainly linear) benchmarks from TPDB
O(1) O(n) O(n2) O(n>2) O(EXP ) <∞ AVG(s)

Loopus 17 171 50 6 0 244 0.40
KoAT1 25 170 74 12 8 289 0.96
CoFloCo 22 197 66 5 0 290 0.59
MaxCore 23 220 67 7 0 317 1.96

KoAT2 26 232 70 15 5 348 8.29
KoAT2 + SIZE 26 233 71 25 3 358 9.97

succ. rate
62%
74%
75%
80%
85%
89%

▶ KoAT1: original KoAT implementation [TOPLAS’ 16]

▶ KoAT2: reimplementation of KoAT1 [RH ’22] + [IJCAR ’22]
▶ At most 386 benchmarks might terminate
▶ KoAT2 + SIZE solves 89% of benchmarks which might terminate.
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Conclusion

▶ Conclusion

• Introduced modular approach for complexity analysis combining

– Procedure to infer size bounds by closed
forms

– time bound computations

• Handle loops with non-linear arithmetic
• Complete for a large class of integer programs
• KoAT2 outperforms other state-of-the-art tools

https://koat.verify.rwth-aachen.de/size

Thank You!
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