

Targeting Completeness: Using Closed Forms for Size Bounds of Integer Programs

14th International Symposium on Frontiers of Combining Systems

Nils Lommen and Jürgen Giesl

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ x_2 + x_1^2 \end{bmatrix}$$
 end

Goal: Infer (upper) size and time bounds for "real-world" programs

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ x_2 + x_1^2 \end{bmatrix}$$
 end

► How large are the variables?

Goal: Infer (upper) size and time bounds for "real-world" programs

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ x_2 + x_1^2 \end{bmatrix}$$
 end
$$\text{while } (x_2 > 0) \text{ do}$$

$$[x_2] \leftarrow [x_2 - 1]$$
 end

► How large are the variables?

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ x_2 + x_1^2 \end{bmatrix}$$
 end
$$\text{while } (x_2 > 0) \text{ do}$$

$$[x_2] \leftarrow [x_2 - 1]$$
 end

- How large are the variables?
- ► How often do we execute the second loop?

while
$$(x_1 > 0)$$
 do $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ x_2 + x_1^2 \end{bmatrix}$ end while $(x_2 > 0)$ do $[x_2] \leftarrow [x_2 - 1]$ end

- ► How large are the variables?
- ► How often do we execute the second loop?
 - Maximal "size" of x₂ times

while
$$(x_1 > 0)$$
 do $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ x_2 + x_1^2 \end{bmatrix}$ end while $(x_2 > 0)$ do $[x_2] \leftarrow [x_2 - 1]$ end

- ► How large are the variables?
- ► How often do we execute the second loop?
 - Maximal "size" of x₂ times
 - Existing tools usually fail with non-linear arithmetic.

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ x_2 + x_1^2 \end{bmatrix}$$
 end
$$\text{while } (x_2 > 0) \text{ do}$$

$$[x_2] \leftarrow [x_2 - 1]$$
 end

- ► How large are the variables?
- ► How often do we execute the second loop?
 - Maximal "size" of x₂ times
 - Existing tools usually fail with non-linear arithmetic.
 - Can compute non-linear size and time bounds for prs loops.

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ x_2 + x_1^2 \end{bmatrix}$$
 end
$$\text{while } (x_2 > 0) \text{ do}$$

$$[x_2] \leftarrow [x_2 - 1]$$
 end

- ► How large are the variables?
- ► How often do we execute the second loop?
 - Maximal "size" of x₂ times
 - Existing tools usually fail with non-linear arithmetic.
 - Can compute non-linear size and time bounds for prs loops.
 - Approach is complete for a large class of programs.

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ x_2 + x_1^2 \end{bmatrix}$$
 end
$$\text{while } (x_2 > 0) \text{ do}$$

$$[x_2] \leftarrow [x_2 - 1]$$
 end

- ► How large are the variables?
- ► How often do we execute the second loop?
 - Maximal "size" of x₂ times
 - Existing tools usually fail with non-linear arithmetic.
 - Can compute non-linear size and time bounds for prs loops.
 - Approach is complete for a large class of programs.
- ➤ Size bound computations are implemented in the automatic complexity analysis tool KoAT

Goal: Infer (upper) size and time bounds for "real-world" programs

loops

size bounds

Goal: Infer (upper) size and time bounds for "real-world" programs

integer programs

Goal: Infer (upper) size and time bounds for "real-world" programs

integer programs

size bounds

while
$$(x_1 > 0)$$
 do $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ x_2 + x_1^2 \end{bmatrix}$ end

Goal: Infer (absolute) size bound for x_1 and x_2

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ x_2 + x_1^2 \end{bmatrix}$$
 end

► Compute closed form for x₁.

Goal: Infer (absolute) size bound for x_1 and x_2

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ x_2 + x_1^2 \end{bmatrix}$$
 end

► Compute closed form for x₁.

► Closed form:

$$cl_{x_1}^n = x_1 - n$$

Goal: Infer (absolute) size bound for x_1 and x_2

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ x_2 + x_1^2 \end{bmatrix}$$
 end

- ► Compute closed form for x₁.
- Over-approximate closed form to non-negative, weakly monotonic increasing expression.

▶ Closed form:

$$cl_{x_1}^n = x_1 - n$$

Goal: Infer (absolute) size bound for x_1 and x_2

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ x_2 + x_1^2 \end{bmatrix}$$
 end

- ► Compute closed form for x₁.
- Over-approximate closed form to non-negative, weakly monotonic increasing expression.

Closed form:

$$cl_{x_1}^n = x_1 - n$$

$$x_1 + n$$

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ x_2 + x_1^2 \end{bmatrix}$$
 end

- ► Compute closed form for x₁.
- Over-approximate closed form to non-negative, weakly monotonic increasing expression.
- ► Replace *n* by an over-approximation of the runtime.

$$\operatorname{cl}_{x_1}^n = x_1 - n$$
$$x_1 + n$$

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ x_2 + x_1^2 \end{bmatrix}$$
 end

- ► Compute closed form for x₁.
- Over-approximate closed form to non-negative, weakly monotonic increasing expression.
- ▶ Replace n by an over-approximation of the runtime.

$$cl_{x_1}^n = x_1 - n$$
$$x_1 + n$$
$$x_1 + x_1$$

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ x_2 + x_1^2 \end{bmatrix}$$
 end

- ► Compute closed form for x₁.
- ➤ Over-approximate closed form to non-negative, weakly monotonic increasing expression.
- ► Replace *n* by an over-approximation of the runtime.

- Over-approximation:
- ➤ Size bound:

$$\operatorname{cl}_{x_1}^n = x_1 - n$$

$$x_1 + n$$

$$x_1 + x_1 = 2 \cdot x_1$$

Goal: Infer (absolute) size bound for x_1 and x_2

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ x_2 + x_1^2 \end{bmatrix}$$
 end

- ► Compute closed form for x₁.
- Over-approximate closed form to non-negative, weakly monotonic increasing expression.
- ► Replace *n* by an over-approximation of the runtime.

$$\operatorname{cl}_{x_1}^n = x_1 - n$$

$$x_1 + n$$

$$x_1 + x_1 = 2 \cdot x_1$$

 \Rightarrow for an initial configuration $x_1 = -5$:

Goal: Infer (absolute) size bound for x_1 and x_2

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ x_2 + x_1^2 \end{bmatrix}$$
 end

- ▶ Compute closed form for x₁.
- Over-approximate closed form to non-negative, weakly monotonic increasing expression.
- ► Replace *n* by an over-approximation of the runtime.

$$cl_{x_1}^n = x_1 - n$$

$$x_1 + n$$

$$x_1 + x_1 = 2 \cdot x_1$$

 \Rightarrow for an initial configuration $x_1 = -5$: $2 \cdot |-5| = 10$

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ x_2 + x_1^2 \end{bmatrix}$$
 end

- Compute closed form for x₂.
- Over-approximate closed form to non-negative, weakly monotonic increasing expression.
- Replace n by an over-approximation of the runtime.

Goal: Infer (absolute) size bound for x_1 and x_2

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ x_2 + x_1^2 \end{bmatrix}$$
 end

- ightharpoonup Compute closed form for x_2 .
- Over-approximate closed form to non-negative, weakly monotonic increasing expression.
- ► Replace *n* by an over-approximation of the runtime.

$$cl_{x_2}^n = x_2 + n \cdot (\frac{1}{6} + x_1 + x_1^2 - x_1 \cdot n - \frac{n}{2} + \frac{n^2}{3})$$

Goal: Infer (absolute) size bound for x_1 and x_2

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ x_2 + x_1^2 \end{bmatrix}$$
 end

- ightharpoonup Compute closed form for x_2 .
- Over-approximate closed form to non-negative, weakly monotonic increasing expression.
- ▶ Replace n by an over-approximation of the runtime.

- Closed form:
- ▶ Over-approximation:

$$cl_{x_2}^n = x_2 + n \cdot \left(\frac{1}{6} + x_1 + x_1^2 - x_1 \cdot n - \frac{n}{2} + \frac{n^2}{3}\right)$$
$$x_2 + n \cdot \left(\frac{1}{6} + x_1 + x_1^2 + x_1 \cdot n + \frac{n}{2} + \frac{n^2}{3}\right)$$

Goal: Infer (absolute) size bound for x_1 and x_2

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ x_2 + x_1^2 \end{bmatrix}$$
 end

- ► Compute closed form for x₂.
- Over-approximate closed form to non-negative, weakly monotonic increasing expression.
- ► Replace *n* by an over-approximation of the runtime.

- ▶ Over-approximation:
- ► Size bound:

$$\operatorname{cl}_{x_2}^n = x_2 + n \cdot \left(\frac{1}{6} + x_1 + x_1^2 - x_1 \cdot n - \frac{n}{2} + \frac{n^2}{3}\right)$$

$$x_2 + n \cdot \left(\frac{1}{6} + x_1 + x_1^2 + x_1 \cdot n + \frac{n}{2} + \frac{n^2}{3}\right)$$

$$x_2 + x_1 \cdot \left(\frac{1}{6} + x_1 + x_1^2 + x_1 \cdot x_1 + \frac{x_1}{2} + \frac{x_1^2}{3}\right)$$

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

while (τ) do

end

▶ τ built from \land , \lor , $(\neg$, ...) and polynomial inequations over \mathbb{Z}

- ▶ τ built from \land , \lor , $(\neg$, ...) and polynomial inequations over \mathbb{Z}
- Partition variables into blocks:

$$S_1 \uplus \cdots \uplus S_d$$

while
$$(\tau)$$
 do
$$\begin{bmatrix} \mathcal{S}_1 \\ \vdots \\ \mathcal{S}_d \end{bmatrix} \leftarrow \begin{bmatrix} A_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & A_d \end{bmatrix} \begin{bmatrix} \mathcal{S}_1 \\ \vdots \\ \mathcal{S}_d \end{bmatrix}$$
 end

- ▶ τ built from \land , \lor , $(\neg$, ...) and polynomial inequations over \mathbb{Z}
- Partition variables into blocks:

$$\mathcal{S}_1 \uplus \cdots \uplus \mathcal{S}_d$$

 $lackbox{} A_i \in \mathbb{Z}^{|\mathcal{S}_i| imes |\mathcal{S}_i|}$ integer matrix

while
$$(\tau)$$
 do
$$\begin{bmatrix} \mathcal{S}_1 \\ \vdots \\ \mathcal{S}_d \end{bmatrix} \leftarrow \begin{bmatrix} A_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & A_d \end{bmatrix} \begin{bmatrix} \mathcal{S}_1 \\ \vdots \\ \mathcal{S}_d \end{bmatrix}$$
 end

- ▶ τ built from \land , \lor , $(\neg$, ...) and polynomial inequations over \mathbb{Z}
- Partition variables into blocks:

$$\mathcal{S}_1 \uplus \cdots \uplus \mathcal{S}_d$$

 $lackbox{A}_i \in \mathbb{Z}^{|\mathcal{S}_i| imes |\mathcal{S}_i|}$ integer matrix

Variable value depends at most linearly on its previous value.

while
$$(au)$$
 do
$$\begin{bmatrix} \mathcal{S}_1 \\ \vdots \\ \mathcal{S}_d \end{bmatrix} \leftarrow \begin{bmatrix} A_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & A_d \end{bmatrix} \begin{bmatrix} \mathcal{S}_1 \\ \vdots \\ \mathcal{S}_d \end{bmatrix}$$
 end

- ▶ τ built from \land , \lor , $(\neg$, ...) and polynomial inequations over \mathbb{Z}
- Partition variables into blocks:

$$\mathcal{S}_1 \uplus \cdots \uplus \mathcal{S}_d$$

 $lackbox{A}_i \in \mathbb{Z}^{|\mathcal{S}_i| imes |\mathcal{S}_i|}$ integer matrix

- Variable value depends at most linearly on its previous value.
 - Prevent super-exponential growth: $x \leftarrow x^2$ (so the value is $x^{(2^n)}$)

while
$$(au)$$
 do
$$\begin{bmatrix} \mathcal{S}_1 \\ \vdots \\ \mathcal{S}_d \end{bmatrix} \leftarrow \begin{bmatrix} A_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & A_d \end{bmatrix} \begin{bmatrix} \mathcal{S}_1 \\ \vdots \\ \mathcal{S}_d \end{bmatrix} + \begin{bmatrix} p_1 \\ \vdots \\ p_d \end{bmatrix}$$
 end

- ▶ τ built from \land , \lor , $(\neg$, ...) and polynomial inequations over \mathbb{Z}
- Partition variables into blocks:

$$\mathcal{S}_1 \uplus \cdots \uplus \mathcal{S}_d$$

- $lackbox{A}_i \in \mathbb{Z}^{|\mathcal{S}_i| imes |\mathcal{S}_i|}$ integer matrix
- $ightharpoonup p_i \in \mathbb{Z}[\bigcup_{j < i} S_j]^{|\mathcal{S}_i|}$ polynomials
- Variable value depends at most linearly on its previous value.
 - Prevent super-exponential growth: $x \leftarrow x^2$ (so the value is $x^{(2^n)}$)

while
$$(au)$$
 do
$$\begin{bmatrix} \mathcal{S}_1 \\ \vdots \\ \mathcal{S}_d \end{bmatrix} \leftarrow \begin{bmatrix} A_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & A_d \end{bmatrix} \begin{bmatrix} \mathcal{S}_1 \\ \vdots \\ \mathcal{S}_d \end{bmatrix} + \begin{bmatrix} p_1 \\ \vdots \\ p_d \end{bmatrix}$$
 end

- ▶ τ built from \land , \lor , $(\neg$, ...) and polynomial inequations over \mathbb{Z}
- Partition variables into blocks:

$$\mathcal{S}_1 \uplus \cdots \uplus \mathcal{S}_d$$

- $ightharpoonup A_i \in \mathbb{Z}^{|\mathcal{S}_i| imes |\mathcal{S}_i|}$ integer matrix
- $ightharpoonup p_i \in \mathbb{Z}[\bigcup_{j < i} S_j]^{|\mathcal{S}_i|}$ polynomials
- Variable value depends at most linearly on its previous value.
 - Prevent super-exponential growth: $x \leftarrow x^2$ (so the value is $x^{(2^n)}$)
- Non-linear dependencies only of variables from blocks with lower indices

while
$$(au)$$
 do
$$\begin{bmatrix} \mathcal{S}_1 \\ \vdots \\ \mathcal{S}_d \end{bmatrix} \leftarrow \begin{bmatrix} A_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & A_d \end{bmatrix} \begin{bmatrix} \mathcal{S}_1 \\ \vdots \\ \mathcal{S}_d \end{bmatrix} + \begin{bmatrix} p_1 \\ \vdots \\ p_d \end{bmatrix}$$
 end

- ▶ τ built from \land , \lor , $(\neg$, ...) and polynomial inequations over \mathbb{Z}
- Partition variables into blocks:

$$\mathcal{S}_1 \uplus \cdots \uplus \mathcal{S}_d$$

- $ightharpoonup A_i \in \mathbb{Z}^{|\mathcal{S}_i| imes |\mathcal{S}_i|}$ integer matrix
- $ightharpoonup p_i \in \mathbb{Z}[\bigcup_{j < i} S_j]^{|\mathcal{S}_i|}$ polynomials
- Variable value depends at most linearly on its previous value.
 - Prevent super-exponential growth: $x \leftarrow x^2$ (so the value is $x^{(2^n)}$)
- ▶ Non-linear dependencies only of variables from blocks with lower indices
- ► Solve recurrence to obtain closed form.

- ▶ τ built from \land , \lor , $(\neg$, ...) and polynomial inequations over \mathbb{Z}
- Partition variables into blocks:

$$\mathcal{S}_1 \uplus \cdots \uplus \mathcal{S}_d$$

- $lackbox{} A_i \in \mathbb{Z}^{|\mathcal{S}_i| imes |\mathcal{S}_i|}$ integer matrix
- $ightharpoonup p_i \in \mathbb{Z}[\bigcup_{j < i} S_j]^{|\mathcal{S}_i|}$ polynomials
- Variable value depends at most linearly on its previous value.
 - Prevent super-exponential growth: $x \leftarrow x^2$ (so the value is $x^{(2^n)}$)
- ▶ Non-linear dependencies only of variables from blocks with lower indices
- ► Solve recurrence to obtain closed form.

- ▶ τ built from \land , \lor , $(\neg$, ...) and polynomial inequations over \mathbb{Z}
- Partition variables into blocks:

$$\mathcal{S}_1 \uplus \cdots \uplus \mathcal{S}_d$$

- $lackbox{A}_i \in \mathbb{Z}^{|\mathcal{S}_i| imes |\mathcal{S}_i|}$ integer matrix
- $ightharpoonup p_i \in \mathbb{Z}[\bigcup_{j < i} S_j]^{|\mathcal{S}_i|}$ polynomials
- Variable value depends at most linearly on its previous value.
 - Prevent super-exponential growth: $x \leftarrow x^2$ (so the value is $x^{(2^n)}$)
- ▶ Non-linear dependencies only of variables from blocks with lower indices
- ► Solve recurrence to obtain closed form.

while
$$(\mathbf{x}_1 > 0)$$
 do
$$\begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{bmatrix} + \begin{bmatrix} -1 \\ \mathbf{x}_1^2 \end{bmatrix}$$
 end

- ▶ τ built from \land , \lor , $(\neg$, ...) and polynomial inequations over \mathbb{Z}
- Partition variables into blocks:

$$\mathcal{S}_1 \uplus \cdots \uplus \mathcal{S}_d$$

- $lackbox{} A_i \in \mathbb{Z}^{|\mathcal{S}_i| imes |\mathcal{S}_i|}$ integer matrix
- $ightharpoonup p_i \in \mathbb{Z}[\bigcup_{j < i} S_j]^{|\mathcal{S}_i|}$ polynomials
- Variable value depends at most linearly on its previous value.
 - Prevent super-exponential growth: $x \leftarrow x^2$ (so the value is $x^{(2^n)}$)
- ▶ Non-linear dependencies only of variables from blocks with lower indices
- ► Solve recurrence to obtain closed form.

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} -1 \\ x_1^2 \\ 0 \\ 0 \end{bmatrix}$$
 end

- ▶ τ built from \land , \lor , $(\neg$, ...) and polynomial inequations over \mathbb{Z}
- Partition variables into blocks:

$$\mathcal{S}_1 \uplus \cdots \uplus \mathcal{S}_d$$

- $lackbox{A}_i \in \mathbb{Z}^{|\mathcal{S}_i| imes |\mathcal{S}_i|}$ integer matrix
- $ightharpoonup p_i \in \mathbb{Z}[\bigcup_{j < i} S_j]^{|\mathcal{S}_i|}$ polynomials
- Variable value depends at most linearly on its previous value.
 - Prevent super-exponential growth: $x \leftarrow x^2$ (so the value is $x^{(2^n)}$)
- ▶ Non-linear dependencies only of variables from blocks with lower indices
- ► Solve recurrence to obtain closed form.

▶ Closed forms are computable for all prs loops.

- ► Closed forms are computable for all prs loops.
 - poly-exponential expressions:

- Closed forms are computable for all prs loops.
 - poly-exponential expressions:

$$\sum_j lpha_j \cdot n^{a_j} \cdot b_j^n$$
 with $lpha_j \in \overline{\mathbb{Q}}[x_1,\ldots,x_d]$, $a_j \in \mathbb{N}$ and $b_j \in \overline{\mathbb{Q}}$

- Closed forms are computable for all prs loops.
 - poly-exponential expressions:

$$\sum_{j} \alpha_{j} \cdot \mathbf{n}^{a_{j}} \cdot \mathbf{b}_{j}^{n}$$
 with $\alpha_{j} \in \overline{\mathbb{Q}}[x_{1}, \dots, x_{d}]$, $a_{j} \in \mathbb{N}$ and $b_{j} \in \overline{\mathbb{Q}}$

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} -1 \\ x_1^2 \\ 0 \\ 0 \end{bmatrix}$$
 end

- Closed forms are computable for all prs loops.
 - poly-exponential expressions:

$$\sum_{j} \alpha_{j} \cdot n^{a_{j}} \cdot b_{j}^{n}$$
 with $\alpha_{j} \in \overline{\mathbb{Q}}[x_{1}, \dots, x_{d}]$, $a_{j} \in \mathbb{N}$ and $b_{j} \in \overline{\mathbb{Q}}$

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} -1 \\ x_1^2 \\ 0 \\ 0 \end{bmatrix}$$
 end

▶ closed form for x₂:

- Closed forms are computable for all prs loops.
 - poly-exponential expressions:

$$\sum_{j} \alpha_{j} \cdot n^{a_{j}} \cdot b_{j}^{n}$$
 with $\alpha_{j} \in \overline{\mathbb{Q}}[x_{1}, \dots, x_{d}]$, $a_{j} \in \mathbb{N}$ and $b_{j} \in \overline{\mathbb{Q}}$

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} -1 \\ x_1^2 \\ 0 \\ 0 \end{bmatrix}$$
 end

► closed form for x_2 : $x_2 + n \cdot (\frac{1}{6} + x_1 + x_1^2 - x_1 \cdot n - \frac{n}{2} + \frac{n^2}{3})$

- Closed forms are computable for all prs loops.
 - poly-exponential expressions:

$$\sum_j \alpha_j \cdot n^{a_j} \cdot b_j^n$$
 with $\alpha_j \in \overline{\mathbb{Q}}[x_1, \dots, x_d]$, $a_j \in \mathbb{N}$ and $b_j \in \overline{\mathbb{Q}}$

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} -1 \\ x_1^2 \\ 0 \\ 0 \end{bmatrix}$$
 end

▶ closed form for x₂:

$$x_2 + n \cdot (\frac{1}{6} + x_1 + x_1^2 - x_1 \cdot n - \frac{n}{2} + \frac{n^2}{3})$$

- Closed forms are computable for all prs loops.
 - poly-exponential expressions:

$$\sum_{j} \alpha_{j} \cdot n^{a_{j}} \cdot b_{j}^{n}$$
 with $\alpha_{j} \in \overline{\mathbb{Q}}[x_{1}, \dots, x_{d}]$, $a_{j} \in \mathbb{N}$ and $b_{j} \in \overline{\mathbb{Q}}$

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} -1 \\ x_1^2 \\ 0 \\ 0 \end{bmatrix}$$
 end

▶ closed form for x₂:

$$x_2 + \mathbf{n} \cdot (\frac{1}{6} + x_1 + x_1^2 - x_1 \cdot \mathbf{n} - \frac{\mathbf{n}}{2} + \frac{\mathbf{n}^2}{3})$$

- Closed forms are computable for all prs loops.
 - poly-exponential expressions:

$$\sum_{j} \alpha_{j} \cdot n^{a_{j}} \cdot b_{j}^{n}$$
 with $\alpha_{j} \in \overline{\mathbb{Q}}[x_{1}, \dots, x_{d}]$, $a_{j} \in \mathbb{N}$ and $b_{j} \in \overline{\mathbb{Q}}$

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} -1 \\ x_1^2 \\ 0 \\ 0 \end{bmatrix}$$
 end

- ► closed form for x_2 : $x_2 + n \cdot (\frac{1}{6} + x_1 + x_1^2 - x_1 \cdot n - \frac{n}{2} + \frac{n^2}{3})$
- ▶ closed form for x₃:

- Closed forms are computable for all prs loops.
 - poly-exponential expressions:

$$\sum_{j} \alpha_{j} \cdot n^{a_{j}} \cdot b_{j}^{n}$$
 with $\alpha_{j} \in \overline{\mathbb{Q}}[x_{1}, \dots, x_{d}]$, $a_{j} \in \mathbb{N}$ and $b_{j} \in \overline{\mathbb{Q}}$

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} -1 \\ x_1^2 \\ 0 \\ 0 \end{bmatrix}$$
 end

- ► closed form for x_2 : $x_2 + n \cdot (\frac{1}{6} + x_1 + x_1^2 - x_1 \cdot n - \frac{n}{2} + \frac{n^2}{3})$
- ▶ closed form for x_3 : $\frac{1}{2} \cdot \alpha \cdot (-i)^n + \frac{1}{2} \cdot \overline{\alpha} \cdot i^n$ for a linear polynomial α .

- Closed forms are computable for all prs loops.
 - poly-exponential expressions:

$$\sum_{j} \alpha_{j} \cdot n^{a_{j}} \cdot b_{j}^{n}$$
 with $\alpha_{j} \in \overline{\mathbb{Q}}[x_{1}, \dots, x_{d}]$, $a_{j} \in \mathbb{N}$ and $b_{j} \in \overline{\mathbb{Q}}$

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} -1 \\ x_1^2 \\ 0 \\ 0 \end{bmatrix}$$
 end

- ► closed form for x_2 : $x_2 + n \cdot (\frac{1}{6} + x_1 + x_1^2 - x_1 \cdot n - \frac{n}{2} + \frac{n^2}{3})$
- ▶ closed form for x_3 : $\frac{1}{2} \cdot \alpha \cdot (-i)^n + \frac{1}{2} \cdot \overline{\alpha} \cdot i^n \text{ for a linear}$ polynomial α .

- Closed forms are computable for all prs loops.
 - poly-exponential expressions:

$$\sum_{j} \alpha_{j} \cdot n^{a_{j}} \cdot b_{j}^{n}$$
 with $\alpha_{j} \in \overline{\mathbb{Q}}[x_{1}, \dots, x_{d}]$, $a_{j} \in \mathbb{N}$ and $b_{j} \in \overline{\mathbb{Q}}$

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} -1 \\ x_1^2 \\ 0 \\ 0 \end{bmatrix}$$
 end

- ► closed form for x_2 : $x_2 + n \cdot (\frac{1}{6} + x_1 + x_1^2 - x_1 \cdot n - \frac{n}{2} + \frac{n^2}{3})$
- ▶ closed form for x_3 : $\frac{1}{2} \cdot \alpha \cdot (-i)^n + \frac{1}{2} \cdot \overline{\alpha} \cdot i^n \text{ for a linear}$ polynomial α .

- Closed forms are computable for all prs loops.
 - poly-exponential expressions:

$$\sum_{j} \alpha_{j} \cdot n^{a_{j}} \cdot b_{j}^{n}$$
 with $\alpha_{j} \in \overline{\mathbb{Q}}[x_{1}, \dots, x_{d}]$, $a_{j} \in \mathbb{N}$ and $b_{j} \in \overline{\mathbb{Q}}$

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} -1 \\ x_1^2 \\ 0 \\ 0 \end{bmatrix}$$
 end

- ► closed form for x_2 : $x_2 + n \cdot (\frac{1}{6} + x_1 + x_1^2 - x_1 \cdot n - \frac{n}{2} + \frac{n^2}{3})$
- ▶ closed form for x_3 : $\frac{1}{2} \cdot \alpha \cdot (-i)^n + \frac{1}{2} \cdot \overline{\alpha} \cdot i^n$ for a linear polynomial α .

▶ How to handle algebraic $\overline{\mathbb{Q}} \setminus \mathbb{Q}$ numbers?

- Closed forms are computable for all prs loops.
 - poly-exponential expressions:

$$\sum_{j} \alpha_{j} \cdot n^{a_{j}} \cdot b_{j}^{n}$$
 with $\alpha_{j} \in \overline{\mathbb{Q}}[x_{1}, \dots, x_{d}]$, $a_{j} \in \mathbb{N}$ and $b_{j} \in \overline{\mathbb{Q}}$

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} -1 \\ x_1^2 \\ 0 \\ 0 \end{bmatrix}$$
 end

- ► closed form for x_2 : $x_2 + n \cdot (\frac{1}{6} + x_1 + x_1^2 - x_1 \cdot n - \frac{n}{2} + \frac{n^2}{3})$
- ▶ closed form for x_3 : $\frac{1}{2} \cdot \alpha \cdot (-i)^n + \frac{1}{2} \cdot \overline{\alpha} \cdot i^n$ for a linear polynomial α .

- ▶ How to handle algebraic $\overline{\mathbb{Q}} \setminus \mathbb{Q}$ numbers?
- ▶ When do we have polynomial size bounds?

- Closed forms are computable for all prs loops.
 - poly-exponential expressions:

$$\sum_{j} \alpha_{j} \cdot n^{a_{j}} \cdot b_{j}^{n}$$
 with $\alpha_{j} \in \overline{\mathbb{Q}}[x_{1}, \dots, x_{d}]$, $a_{j} \in \mathbb{N}$ and $b_{j} \in \overline{\mathbb{Q}}$

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} -1 \\ x_1^2 \\ 0 \\ 0 \end{bmatrix}$$
 end

- ► closed form for x_2 : $x_2 + n \cdot (\frac{1}{6} + x_1 + x_1^2 - x_1 \cdot n - \frac{n}{2} + \frac{n^2}{3})$
- ▶ closed form for x_3 : $\frac{1}{2} \cdot \alpha \cdot (-i)^n + \frac{1}{2} \cdot \overline{\alpha} \cdot i^n$ for a linear polynomial α .

- ▶ How to handle algebraic $\overline{\mathbb{Q}} \setminus \mathbb{Q}$ numbers?
- ▶ When do we have polynomial size bounds?
 - When are (polynomial) time bounds computable?

Goal: Infer (absolute) size bound for x_3

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ 3x_3 + 2x_4 \\ -5x_3 - 3x_4 \end{bmatrix}$$
 end

- ▶ Compute closed form for x₃.
- $\begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 1 \\ 3x_3 + 2x_4 \\ -5x_3 3x_4 \end{bmatrix}$ \blacktriangleright Over-approximate closed form to non-negative weakly monotonic increasing expression. \blacktriangleright Replace n by an over-approximation of the Over-approximate closed form to non-negative,
 - runtime.

Goal: Infer (absolute) size bound for x_3

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ 3x_3 + 2x_4 \\ -5x_3 - 3x_4 \end{bmatrix}$$
 end

- ▶ Compute closed form for x₃.
- $\begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 1 \\ 3x_3 + 2x_4 \\ -5x_3 3x_4 \end{bmatrix}$ Over-approximate closed form to non-negative weakly monotonic increasing expression. Replace n by an over-approximation of the Over-approximate closed form to non-negative,
 - runtime.

Closed form:

$$\mathtt{cl}_{x_3}^n = \frac{1}{2} \cdot \alpha \cdot (-\mathrm{i})^n + \frac{1}{2} \cdot \overline{\alpha} \cdot \mathrm{i}^n$$

Goal: Infer (absolute) size bound for x_3

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ 3x_3 + 2x_4 \\ -5x_3 - 3x_4 \end{bmatrix}$$
 end

- ▶ Compute closed form for x₃.
- Over-approximate closed form to non-negative,
 - runtime.

► Closed form:

$$\operatorname{cl}_{x_3}^n = \frac{1}{2} \cdot \alpha \cdot (-\mathrm{i})^n + \frac{1}{2} \cdot \overline{\alpha} \cdot \mathrm{i}^n$$

Over-approximation:

Goal: Infer (absolute) size bound for x_3

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ 3x_3 + 2x_4 \\ -5x_3 - 3x_4 \end{bmatrix}$$
 end

- Compute closed form for x₃.
- $\begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 1 \\ 3x_3 + 2x_4 \\ -5x_3 3x_4 \end{bmatrix}$ > Over-approximate closed form to non-negative weakly monotonic increasing expression. > Replace n by an over-approximation of the Over-approximate closed form to non-negative,
 - runtime.

- ► Closed form:
- Over-approximation:

$$\mathbf{cl}_{x_3}^n = \frac{1}{2} \cdot \alpha \cdot (-\mathbf{i})^n + \frac{1}{2} \cdot \overline{\alpha} \cdot \mathbf{i}^n$$
$$\frac{1}{2} \cdot |\alpha| \cdot (|-\mathbf{i}|)^n + \frac{1}{2} \cdot |\overline{\alpha}| \cdot |\mathbf{i}|^n$$

while
$$(x_1>0)$$
 do
$$\begin{bmatrix}x_1\\x_3\\x_4\end{bmatrix}\leftarrow\begin{bmatrix}x_1-1\\3x_3+2x_4\\-5x_3-3x_4\end{bmatrix}$$
 end

- ▶ Compute closed form for x₃.
- $\begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 1 \\ 3x_3 + 2x_4 \\ -5x_3 3x_4 \end{bmatrix}$ > Over-approximate closed form to non-negative weakly monotonic increasing expression. > Replace n by an over-approximation of the Over-approximate closed form to non-negative,
 - runtime.

- Closed form:
- Over-approximation:

$$\mathbf{cl}_{x_3}^n = \frac{1}{2} \cdot \alpha \cdot (-\mathbf{i})^n + \frac{1}{2} \cdot \overline{\alpha} \cdot \mathbf{i}^n$$
$$\frac{1}{2} \cdot |\alpha| \cdot (|-\mathbf{i}|)^n + \frac{1}{2} \cdot |\overline{\alpha}| \cdot |\mathbf{i}|^n = \frac{1}{2} \cdot |\alpha| + \frac{1}{2} \cdot |\overline{\alpha}|$$

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ 3x_3 + 2x_4 \\ -5x_3 - 3x_4 \end{bmatrix}$$
 end

- Compute closed form for x₃.
- $\begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 1 \\ 3x_3 + 2x_4 \\ -5x_3 3x_4 \end{bmatrix}$ > Over-approximate closed form to non-negative weakly monotonic increasing expression. > Replace n by an over-approximation of the Over-approximate closed form to non-negative,
 - runtime.

- Closed form:
- Over-approximation:

$$\mathbf{cl}_{x_3}^n = \frac{1}{2} \cdot \alpha \cdot (-\mathbf{i})^n + \frac{1}{2} \cdot \overline{\alpha} \cdot \mathbf{i}^n$$
$$\frac{1}{2} \cdot |\alpha| \cdot (|-\mathbf{i}|)^n + \frac{1}{2} \cdot |\overline{\alpha}| \cdot |\mathbf{i}|^n = |\alpha|$$

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ 3x_3 + 2x_4 \\ -5x_3 - 3x_4 \end{bmatrix}$$
 end

- ▶ Compute closed form for x₃.
- $\begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 1 \\ 3x_3 + 2x_4 \\ -5x_3 3x_4 \end{bmatrix}$ Over-approximate closed form to non-negative weakly monotonic increasing expression. Replace n by an over-approximation of the Over-approximate closed form to non-negative,
 - runtime.

- ► Closed form:
- ▶ Over-approximation:
- Size bound:

$$\mathbf{cl}_{x_3}^n = \frac{1}{2} \cdot \alpha \cdot (-\mathbf{i})^n + \frac{1}{2} \cdot \overline{\alpha} \cdot \mathbf{i}^n$$

$$\frac{1}{2} \cdot |\alpha| \cdot (|-\mathbf{i}|)^n + \frac{1}{2} \cdot |\overline{\alpha}| \cdot |\mathbf{i}|^n = |\alpha|$$

$$|\alpha| = 4 \cdot x_3 + 2 \cdot x_4$$

Goal: Infer (absolute) size bound for x_3

while
$$(x_1>0)$$
 do
$$\begin{bmatrix}x_1\\x_3\\x_4\end{bmatrix}\leftarrow\begin{bmatrix}x_1-1\\3x_3+2x_4\\-5x_3-3x_4\end{bmatrix}$$
 end

- ▶ Compute closed form for x₃.
- $\begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 1 \\ 3x_3 + 2x_4 \\ -5x_3 3x_4 \end{bmatrix}$ > Over-approximate closed form to non-negative weakly monotonic increasing expression. Over-approximate closed form to non-negative,
 - runtime.

$$\mathbf{cl}_{x_3}^n = \frac{1}{2} \cdot \alpha \cdot (-\mathbf{i})^n + \frac{1}{2} \cdot \overline{\alpha} \cdot \mathbf{i}^n$$

$$\frac{1}{2} \cdot |\alpha| \cdot (|-\mathbf{i}|)^n + \frac{1}{2} \cdot |\overline{\alpha}| \cdot |\mathbf{i}|^n = |\alpha|$$

$$|\alpha| = 4 \cdot x_3 + 2 \cdot x_4$$

► How to handle algebraic Q \ Q numbers?

Goal: Infer (absolute) size bound for x_3

while
$$(x_1>0)$$
 do
$$\begin{bmatrix}x_1\\x_3\\x_4\end{bmatrix}\leftarrow\begin{bmatrix}x_1-1\\3x_3+2x_4\\-5x_3-3x_4\end{bmatrix}$$
 end

- ▶ Compute closed form for x₃.
- $\begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 1 \\ 3x_3 + 2x_4 \\ -5x_3 3x_4 \end{bmatrix}$ > Over-approximate closed form to non-negative weakly monotonic increasing expression. Over-approximate closed form to non-negative,
 - runtime.

$$\mathbf{cl}_{x_3}^n = \frac{1}{2} \cdot \alpha \cdot (-\mathbf{i})^n + \frac{1}{2} \cdot \overline{\alpha} \cdot \mathbf{i}^n$$

$$\frac{1}{2} \cdot |\alpha| \cdot (|-\mathbf{i}|)^n + \frac{1}{2} \cdot |\overline{\alpha}| \cdot |\mathbf{i}|^n = |\alpha|$$

$$|\alpha| = 4 \cdot x_3 + 2 \cdot x_4$$

► How to handle algebraic Q \ Q numbers? Take absolute value!

while
$$(x_1>0)$$
 do
$$\begin{bmatrix}x_1\\x_3\\x_4\end{bmatrix}\leftarrow\begin{bmatrix}x_1-1\\3x_3+2x_4\\-5x_3-3x_4\end{bmatrix}$$
 end

- Compute closed form for x₃.
- $\begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 1 \\ 3x_3 + 2x_4 \\ -5x_3 3x_4 \end{bmatrix}$ Over-approximate closed form to non-negative weakly monotonic increasing expression. Replace n by an over-approximation of the Over-approximate closed form to non-negative,
 - runtime.

$$\mathbf{cl}_{x_3}^n = \frac{1}{2} \cdot \alpha \cdot (-\mathbf{i})^n + \frac{1}{2} \cdot \overline{\alpha} \cdot \mathbf{i}^n$$

$$\frac{1}{2} \cdot |\alpha| \cdot (|-\mathbf{i}|)^n + \frac{1}{2} \cdot |\overline{\alpha}| \cdot |\mathbf{i}|^n = |\alpha|$$

$$|\alpha| = 4 \cdot x_3 + 2 \cdot x_4$$

- ▶ How to handle algebraic $\overline{\mathbb{Q}} \setminus \mathbb{Q}$ numbers? Take absolute value!
- When do we have polynomial size bounds?

while
$$(x_1>0)$$
 do
$$\begin{bmatrix}x_1\\x_3\\x_4\end{bmatrix}\leftarrow\begin{bmatrix}x_1-1\\3x_3+2x_4\\-5x_3-3x_4\end{bmatrix}$$
 end

- Compute closed form for x₃.
- $\begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 1 \\ 3x_3 + 2x_4 \\ -5x_3 3x_4 \end{bmatrix}$ Over-approximate closed form to non-negative weakly monotonic increasing expression. Replace n by an over-approximation of the Over-approximate closed form to non-negative,
 - runtime.

$$\mathbf{cl}_{x_3}^n = \frac{1}{2} \cdot \alpha \cdot (-\mathbf{i})^n + \frac{1}{2} \cdot \overline{\alpha} \cdot \mathbf{i}^n$$

$$\frac{1}{2} \cdot |\alpha| \cdot (|-\mathbf{i}|)^n + \frac{1}{2} \cdot |\overline{\alpha}| \cdot |\mathbf{i}|^n = |\alpha|$$

$$|\alpha| = 4 \cdot x_3 + 2 \cdot x_4$$

- ▶ How to handle algebraic $\overline{\mathbb{Q}} \setminus \mathbb{Q}$ numbers? Take absolute value!
- When do we have polynomial size bounds?
 - All eigenvalues λ are *unit*: $|\lambda| \leq 1$

while
$$(x_1>0)$$
 do
$$\begin{bmatrix}x_1\\x_3\\x_4\end{bmatrix}\leftarrow\begin{bmatrix}x_1-1\\3x_3+2x_4\\-5x_3-3x_4\end{bmatrix}$$
 end

- Compute closed form for x₃.
- $\begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 1 \\ 3x_3 + 2x_4 \\ -5x_3 3x_4 \end{bmatrix}$ Over-approximate closed form to non-negative weakly monotonic increasing expression. Replace n by an over-approximation of the Over-approximate closed form to non-negative,
 - runtime.

$$\mathbf{cl}_{x_3}^n = \frac{1}{2} \cdot \alpha \cdot (-\mathbf{i})^n + \frac{1}{2} \cdot \overline{\alpha} \cdot \mathbf{i}^n$$

$$\frac{1}{2} \cdot |\alpha| \cdot (|-\mathbf{i}|)^n + \frac{1}{2} \cdot |\overline{\alpha}| \cdot |\mathbf{i}|^n = |\alpha|$$

$$|\alpha| = 4 \cdot x_3 + 2 \cdot x_4$$

- ▶ How to handle algebraic $\overline{\mathbb{Q}} \setminus \mathbb{Q}$ numbers? Take absolute value!
- When do we have polynomial size bounds?
 - All eigenvalues λ are *unit*: $|\lambda| \leq 1$
 - When are (polynomial) time bounds computable?

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

while
$$(au)$$
 do
$$\begin{bmatrix} \mathcal{S}_1 \\ \vdots \\ \mathcal{S}_d \end{bmatrix} \leftarrow \begin{bmatrix} A_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & A_d \end{bmatrix} \begin{bmatrix} \mathcal{S}_1 \\ \vdots \\ \mathcal{S}_d \end{bmatrix} + \begin{bmatrix} p_1 \\ \vdots \\ p_d \end{bmatrix}$$
 end

- ▶ τ built from \land , \lor , $(\neg$, ...) and polynomial inequations over \mathbb{Z}
- Partition variables into blocks:

$$\mathcal{S}_1 \uplus \cdots \uplus \mathcal{S}_d$$

- $ightharpoonup A_i \in \mathbb{Z}^{|\mathcal{S}_i| imes |\mathcal{S}_i|}$ integer matrix
- $ightharpoonup p_i \in \mathbb{Z}[\bigcup_{j < i} S_j]^{|\mathcal{S}_i|}$ polynomials
- Variable value depends at most linearly on its previous value.
 - Prevent super-exponential growth: $x \leftarrow x^2$ (so the value is $x^{(2^n)}$)
- ▶ Non-linear dependencies only of variables from blocks with lower indices
- ► Solve recurrence to obtain closed form.

while
$$(au)$$
 do
$$\begin{bmatrix} \mathcal{S}_1 \\ \vdots \\ \mathcal{S}_d \end{bmatrix} \leftarrow \begin{bmatrix} A_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & A_d \end{bmatrix} \begin{bmatrix} \mathcal{S}_1 \\ \vdots \\ \mathcal{S}_d \end{bmatrix} + \begin{bmatrix} p_1 \\ \vdots \\ p_d \end{bmatrix}$$
 end

- ▶ τ built from \land , \lor , $(\neg$, ...) and polynomial inequations over \mathbb{Z}
- Partition variables into blocks:

$$\mathcal{S}_1 \uplus \cdots \uplus \mathcal{S}_d$$

- $ightharpoonup A_i \in \mathbb{Z}^{|\mathcal{S}_i| imes |\mathcal{S}_i|}$ integer matrix
- $ightharpoonup p_i \in \mathbb{Z}[\bigcup_{j < i} S_j]^{|\mathcal{S}_i|}$ polynomials
- Variable value depends at most linearly on its previous value.
 - Prevent super-exponential growth: $x \leftarrow x^2$ (so the value is $x^{(2^n)}$)
- ▶ Non-linear dependencies only of variables from blocks with lower indices
- ▶ Solve recurrence to obtain closed form.
- ▶ Periodic rational: there exists $n \in \mathbb{N}$ s.t. $\lambda^n \in \mathbb{Q}$ for $\lambda \in \overline{\mathbb{Q}}$

while
$$(au)$$
 do
$$\begin{bmatrix} \mathcal{S}_1 \\ \vdots \\ \mathcal{S}_d \end{bmatrix} \leftarrow \begin{bmatrix} A_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & A_d \end{bmatrix} \begin{bmatrix} \mathcal{S}_1 \\ \vdots \\ \mathcal{S}_d \end{bmatrix} + \begin{bmatrix} p_1 \\ \vdots \\ p_d \end{bmatrix}$$
 end

- ▶ τ built from \land , \lor , $(\neg$, ...) and polynomial inequations over \mathbb{Z}
- Partition variables into blocks:

$$\mathcal{S}_1 \uplus \cdots \uplus \mathcal{S}_d$$

- $ightharpoonup A_i \in \mathbb{Z}^{|\mathcal{S}_i| imes |\mathcal{S}_i|}$ integer matrix
- $ightharpoonup p_i \in \mathbb{Z}[\bigcup_{j < i} S_j]^{|\mathcal{S}_i|}$ polynomials
- Variable value depends at most linearly on its previous value.
 - Prevent super-exponential growth: $x \leftarrow x^2$ (so the value is $x^{(2^n)}$)
- ▶ Non-linear dependencies only of variables from blocks with lower indices
- ▶ Solve recurrence to obtain closed form.
- ▶ Periodic rational: there exists $n \in \mathbb{N}$ s.t. $\lambda^n \in \mathbb{Q}$ for $\lambda \in \overline{\mathbb{Q}}$ $\sqrt{3}$ and i as $(\sqrt{3})^2 \in \mathbb{Q}$ and $i^2 \in \mathbb{Q}$ ✓

while
$$(au)$$
 do
$$\begin{bmatrix} \mathcal{S}_1 \\ \vdots \\ \mathcal{S}_d \end{bmatrix} \leftarrow \begin{bmatrix} A_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & A_d \end{bmatrix} \begin{bmatrix} \mathcal{S}_1 \\ \vdots \\ \mathcal{S}_d \end{bmatrix} + \begin{bmatrix} p_1 \\ \vdots \\ p_d \end{bmatrix}$$
 end

- ▶ τ built from \land , \lor , $(\neg$, ...) and polynomial inequations over \mathbb{Z}
- Partition variables into blocks:

$$\mathcal{S}_1 \uplus \cdots \uplus \mathcal{S}_d$$

- $ightharpoonup A_i \in \mathbb{Z}^{|\mathcal{S}_i| imes |\mathcal{S}_i|}$ integer matrix
- $ightharpoonup p_i \in \mathbb{Z}[\bigcup_{j < i} S_j]^{|\mathcal{S}_i|}$ polynomials
- Variable value depends at most linearly on its previous value.
 - Prevent super-exponential growth: $x \leftarrow x^2$ (so the value is $x^{(2^n)}$)
- ▶ Non-linear dependencies only of variables from blocks with lower indices
- ▶ Solve recurrence to obtain closed form.
- ▶ Periodic rational: there exists $n \in \mathbb{N}$ s.t. $\lambda^n \in \mathbb{Q}$ for $\lambda \in \overline{\mathbb{Q}}$ $\sqrt{3}$ and i as $(\sqrt{3})^2 \in \mathbb{Q}$ and $i^2 \in \mathbb{Q}$ ✓ 2+3i ×

while
$$(au)$$
 do
$$\begin{bmatrix} \mathcal{S}_1 \\ \vdots \\ \mathcal{S}_d \end{bmatrix} \leftarrow \begin{bmatrix} A_1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & A_d \end{bmatrix} \begin{bmatrix} \mathcal{S}_1 \\ \vdots \\ \mathcal{S}_d \end{bmatrix} + \begin{bmatrix} p_1 \\ \vdots \\ p_d \end{bmatrix}$$
 end

- ▶ τ built from \land , \lor , $(\neg$, ...) and polynomial inequations over \mathbb{Z}
- Partition variables into blocks:

$$S_1 \uplus \cdots \uplus S_d$$

- ► $A_i \in \mathbb{Z}^{|\mathcal{S}_i| \times |\mathcal{S}_i|}$ integer matrix with periodic rational eigenvalues
- $ightharpoonup p_i \in \mathbb{Z}[\bigcup_{j < i} S_j]^{|\mathcal{S}_i|}$ polynomials
- Variable value depends at most linearly on its previous value.
 - Prevent super-exponential growth: $x \leftarrow x^2$ (so the value is $x^{(2^n)}$)
- ▶ Non-linear dependencies only of variables from blocks with lower indices
- ▶ Solve recurrence to obtain closed form.
- ▶ Periodic rational: there exists $n \in \mathbb{N}$ s.t. $\lambda^n \in \mathbb{Q}$ for $\lambda \in \overline{\mathbb{Q}}$ $\sqrt{3}$ and i as $(\sqrt{3})^2 \in \mathbb{Q}$ and $i^2 \in \mathbb{Q}$ ✓ 2+3i ×

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

▶ (Polynomial) time bounds are computable for all terminating prs loops.

- ► (Polynomial) time bounds are computable for all terminating prs loops.
 - chain (unroll) loops accordingly to their period

- ► (Polynomial) time bounds are computable for all terminating prs loops.
 - chain (unroll) loops accordingly to their period → integer eigenvalues

- ► (Polynomial) time bounds are computable for all terminating prs loops.
 - chain (unroll) loops accordingly to their period → integer eigenvalues

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} -1 \\ x_1^2 \\ 0 \\ 0 \end{bmatrix}$$
 end

- (Polynomial) time bounds are computable for all terminating prs loops.
 - chain (unroll) loops accordingly to their period → integer eigenvalues

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} -1 \\ x_1^2 \\ 0 \\ 0 \end{bmatrix}$$
 end

▶ 1 has period 1

RWTH Aachen University – LuFGi2

- ► (Polynomial) time bounds are computable for all terminating prs loops.
 - chain (unroll) loops accordingly to their period → integer eigenvalues

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} -1 \\ x_1^2 \\ 0 \\ 0 \end{bmatrix}$$
 end

- ▶ 1 has period 1
- ▶ i has period 2 as $i^2 = -1 \in \mathbb{Q}$

- ► (Polynomial) time bounds are computable for all terminating prs loops.
 - chain (unroll) loops accordingly to their period → integer eigenvalues

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} -1 \\ x_1^2 \\ 0 \\ 0 \end{bmatrix}$$
 end

- ▶ 1 has period 1
- ▶ i has period 2 as $i^2 = -1 \in \mathbb{Q}$
- ▶ -i has period 2 as $(-i)^2 = -1 \in \mathbb{Q}$

- (Polynomial) time bounds are computable for all terminating prs loops.
 - chain (unroll) loops accordingly to their period → integer eigenvalues

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} -1 \\ x_1^2 \\ 0 \\ 0 \end{bmatrix}$$
 end

- ▶ 1 has period 1
- ▶ i has period 2 as $i^2 = -1 \in \mathbb{Q}$
- ▶ -i has period 2 as $(-i)^2 = -1 \in \mathbb{Q}$ ⇒ chain loop once

- (Polynomial) time bounds are computable for all terminating prs loops.
 - chain (unroll) loops accordingly to their period → integer eigenvalues

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} -1 \\ x_1^2 \\ 0 \\ 0 \end{bmatrix}$$
 • i has period 2 as $i^2 = -1 \in \mathbb{Q}$ • $-i$ has period 2 as $(-i)^2 = -1 \in \mathbb{Q}$ • $-i$ has period 2 as $(-i)^2 = -1 \in \mathbb{Q}$ • $-i$ has period 2 as $(-i)^2 = -1 \in \mathbb{Q}$ • $-i$ has period 2 as $(-i)^2 = -1 \in \mathbb{Q}$ • $-i$ has period 2 as $(-i)^2 = -1 \in \mathbb{Q}$ • $-i$ has period 2 as $(-i)^2 = -1 \in \mathbb{Q}$

- ▶ 1 has period 1
- ▶ i has period 2 as $i^2 = -1 \in \mathbb{Q}$

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} \\ \\ \\ \end{bmatrix} \leftarrow \begin{bmatrix} \\ \\ \end{bmatrix} + \begin{bmatrix} \\ \\ \end{bmatrix}$$
 end

- (Polynomial) time bounds are computable for all terminating prs loops.
 - chain (unroll) loops accordingly to their period → integer eigenvalues

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} -1 \\ x_1^2 \\ 0 \\ 0 \end{bmatrix}$$
 • i has period 2 as $i^2 = -1 \in \mathbb{Q}$ • $-i$ has period 2 as $(-i)^2 = -1 \in \mathbb{Q}$ • $-i$ has period 2 as $(-i)^2 = -1 \in \mathbb{Q}$ • $-i$ has period 2 as $(-i)^2 = -1 \in \mathbb{Q}$ • $-i$ has period 2 as $(-i)^2 = -1 \in \mathbb{Q}$ • $-i$ has period 2 as $(-i)^2 = -1 \in \mathbb{Q}$ • $-i$ has period 2 as $(-i)^2 = -1 \in \mathbb{Q}$

- ▶ 1 has period 1
- ▶ i has period 2 as $i^2 = -1 \in \mathbb{Q}$

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ - \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ & \end{bmatrix} \begin{bmatrix} x_1 \\ + \end{bmatrix} + \begin{bmatrix} -2 \\ \end{bmatrix}$$
 end

- (Polynomial) time bounds are computable for all terminating prs loops.
 - chain (unroll) loops accordingly to their period → integer eigenvalues

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} -1 \\ x_1^2 \\ 0 \\ 0 \end{bmatrix}$$
 • i has period 2 as $i^2 = -1 \in \mathbb{Q}$ • $-i$ has period 2 as $(-i)^2 = -1 \in \mathbb{Q}$ • $-i$ has period 2 as $(-i)^2 = -1 \in \mathbb{Q}$ • $-i$ has period 2 as $(-i)^2 = -1 \in \mathbb{Q}$ • $-i$ has period 2 as $(-i)^2 = -1 \in \mathbb{Q}$ • $-i$ has period 2 as $(-i)^2 = -1 \in \mathbb{Q}$ • $-i$ has period 2 as $(-i)^2 = -1 \in \mathbb{Q}$ • $-i$ has period 2 as $(-i)^2 = -1 \in \mathbb{Q}$ • $-i$ has period 2 as $(-i)^2 = -1 \in \mathbb{Q}$ • $-i$ has period 2 as $(-i)^2 = -1 \in \mathbb{Q}$ • $-i$ has period 2 as $(-i)^2 = -1 \in \mathbb{Q}$ • $-i$ has period 2 as $(-i)^2 = -1 \in \mathbb{Q}$

- ▶ 1 has period 1
- ▶ i has period 2 as $i^2 = -1 \in \mathbb{Q}$

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \\ \\ \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \end{bmatrix} + \begin{bmatrix} -2 \\ x_1^2 + (x_1 - 1)^2 \\ \end{bmatrix}$$
 end

- (Polynomial) time bounds are computable for all terminating prs loops.
 - chain (unroll) loops accordingly to their period → integer eigenvalues

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} -1 \\ x_1^2 \\ 0 \\ 0 \end{bmatrix}$$
 \(\bigcirc \text{ i has period } 2 \text{ as } i^2 = -1 \in \mathbb{Q} \) \(\bigcirc \text{ i has period } 2 \text{ as } (-i)^2 = -1 \in \mathbb{Q} \) \(\bigcirc \text{ chain loop once} \) end

- ▶ 1 has period 1
- ▶ i has period 2 as $i^2 = -1 \in \mathbb{Q}$

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} -2 \\ x_1^2 + (x_1 - 1)^2 \\ 0 \\ 0 \end{bmatrix}$$
 end

- (Polynomial) time bounds are computable for all terminating prs loops.
 - chain (unroll) loops accordingly to their period → integer eigenvalues

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}
\leftarrow
\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -5 & -3 \end{bmatrix}
\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix}
+
\begin{bmatrix} -1 \\ x_1^2 \\ 0 \\ 0 \end{bmatrix}$$
► i has period 1

► i has period 2 as i^2

► -i has period 2 as $(x_1 + x_2)$
⇒ chain loop once

- ▶ i has period 2 as $i^2 = -1 \in \mathbb{Q}$
- ▶ -i has period 2 as $(-i)^2 = -1 \in \mathbb{Q}$

- while $(x_1 > 0)$ do $\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} + \begin{bmatrix} -2 \\ x_1^2 + (x_1 - 1)^2 \\ 0 \end{bmatrix}$
- Prove termination for chained loops [SAS '20]
 - co-NP-complete for linear arithmetic

end

- (Polynomial) time bounds are computable for all terminating prs loops.
 - chain (unroll) loops accordingly to their period → integer eigenvalues

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} -1 \\ x_1^2 \\ 0 \\ 0 \end{bmatrix}$$
end

- ▶ i has period 2 as $i^2 = -1 \in \mathbb{Q}$
- ▶ -i has period 2 as $(-i)^2 = -1 \in \mathbb{Q}$ ⇒ chain loop once

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} -2 \\ x_1^2 + (x_1 - 1)^2 \\ 0 \\ 0 \end{bmatrix}$$

- ▶ Prove termination for chained loops [SAS '20]
 - co-NP-complete for linear arithmetic
- ➤ Find time bounds for terminating chained loops [LPAR '20]

end

- (Polynomial) time bounds are computable for all terminating prs loops.
 - chain (unroll) loops accordingly to their period → integer eigenvalues

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} -1 \\ x_1^2 \\ 0 \\ 0 \end{bmatrix}$$
 end

- ▶ i has period 2 as $i^2 = -1 \in \mathbb{Q}$
- ▶ -i has period 2 as $(-i)^2 = -1 \in \mathbb{Q}$ \Rightarrow chain loop once

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} -2 \\ x_1^2 + (x_1 - 1)^2 \\ 0 \\ 0 \end{bmatrix}$$

- Prove termination for chained loops [SAS '20]
 - co-NP-complete for linear arithmetic
- Find time bounds for terminating chained loops [LPAR '20]
- Derive time bound for original loops

end

▶ Closed forms are computable for all prs loops.

- Closed forms are computable for all prs loops.
- ➤ Polynomial time bounds are computable for all terminating prs loops. [LPAR '20]

- Closed forms are computable for all prs loops.
- ▶ Polynomial time bounds are computable for all terminating prs loops. [LPAR '20]
- Size bounds are computable for all terminating prs loops.

- Closed forms are computable for all prs loops.
- ▶ Polynomial time bounds are computable for all terminating prs loops. [LPAR '20]
- Size bounds are computable for all terminating prs loops.
- ▶ Polynomial size bounds are computable for all *unit* prs loops.

Completeness: PRS Loops

- Closed forms are computable for all prs loops.
- ▶ Polynomial time bounds are computable for all terminating prs loops. [LPAR '20]
- Size bounds are computable for all terminating prs loops.
- ▶ Polynomial size bounds are computable for all *unit* prs loops.
 - *unit*: for all eigenvalues $\lambda \in \overline{\mathbb{Q}}$ we have $|\lambda| \leq 1$

Completeness: PRS Loops

- Closed forms are computable for all prs loops.
- Polynomial time bounds are computable for all terminating prs loops. [LPAR '20]
- ► Size bounds are computable for all terminating prs loops.
- ▶ Polynomial size bounds are computable for all *unit* prs loops.
 - *unit*: for all eigenvalues $\lambda \in \overline{\mathbb{Q}}$ we have $|\lambda| \leq 1$

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 3 & 2 \\ 0 & 0 & -5 & -3 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} + \begin{bmatrix} -1 \\ x_1^2 \\ 0 \\ 0 \end{bmatrix}$$
 end

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

RWTH Aachen University – LuFGi2

Overview

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ 3x_3 + 2x_4 \\ -5x_3 + -3x_4 \end{bmatrix}$$
 end

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ 3x_3 + 2x_4 \\ -5x_3 + -3x_4 \end{bmatrix}$$
 end
$$\text{while } (x_3 > 0) \text{ do}$$

$$\begin{bmatrix} x_3 \\ y \end{bmatrix} \leftarrow \begin{bmatrix} x_3 - 1 \\ y + 1 \end{bmatrix}$$
 end

Goal: Infer size and time bounds for "real-world" programs

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ 3x_3 + 2x_4 \\ -5x_3 + -3x_4 \end{bmatrix}$$
 end
$$\text{while } (x_3 > 0) \text{ do}$$

$$\begin{bmatrix} x_3 \\ y \end{bmatrix} \leftarrow \begin{bmatrix} x_3 - 1 \\ y + 1 \end{bmatrix}$$
 end

➤ Size of y after second loop:

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ 3x_3 + 2x_4 \\ -5x_3 + -3x_4 \end{bmatrix}$$
 end
$$\text{while } (x_3 > 0) \text{ do}$$

$$\begin{bmatrix} x_3 \\ y \end{bmatrix} \leftarrow \begin{bmatrix} x_3 - 1 \\ y + 1 \end{bmatrix}$$
 end

- ➤ Size of y after second loop:
- Idea: Analyze different subprograms and combine results

Goal: Infer size and time bounds for "real-world" programs

while $(x_3 > 0)$ do $\begin{bmatrix} x_3 \\ y \end{bmatrix} \leftarrow \begin{bmatrix} x_3 - 1 \\ y + 1 \end{bmatrix}$ end

- ➤ Size of y after second loop:
- Idea: Analyze different subprograms and combine results

while
$$(x_3 > 0)$$
 do
$$\begin{bmatrix} x_3 \\ y \end{bmatrix} \leftarrow \begin{bmatrix} x_3 - 1 \\ y + 1 \end{bmatrix}$$
 end

- ➤ Size of y after second loop:
- Idea: Analyze different subprograms and combine results
 - y "locally" has size $y + x_3$

while
$$(x_3 > 0)$$
 do
$$\begin{bmatrix} x_3 \\ y \end{bmatrix} \leftarrow \begin{bmatrix} x_3 - 1 \\ y + 1 \end{bmatrix}$$
 end

- ► Size of y after second loop:
- Idea: Analyze different subprograms and combine results
 - y "locally" has size $y + x_3$

Size of y:
$$y + x_3$$

Goal: Infer size and time bounds for "real-world" programs

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ 3x_3 + 2x_4 \\ -5x_3 + -3x_4 \end{bmatrix}$$
 end while $(x_3 > 0)$ do
$$\begin{bmatrix} x_3 \\ y \end{bmatrix} \leftarrow \begin{bmatrix} x_3 - 1 \\ y + 1 \end{bmatrix}$$
 end

- ➤ Size of y after second loop:
- Idea: Analyze different subprograms and combine results
 - y "locally" has size $y + x_3$
- Respect size of variables:

Size of y: $y + x_3$

Goal: Infer size and time bounds for "real-world" programs

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ 3x_3 + 2x_4 \\ -5x_3 + -3x_4 \end{bmatrix}$$
 end
$$\text{while } (x_3 > 0) \text{ do}$$

$$\begin{bmatrix} x_3 \\ y \end{bmatrix} \leftarrow \begin{bmatrix} x_3 - 1 \\ y + 1 \end{bmatrix}$$
 end

- ➤ Size of y after second loop:
- Idea: Analyze different subprograms and combine results
 - y "locally" has size $y + x_3$
- Respect size of variables:
 - x_3 is size bounded by $4 \cdot x_3 + 2 \cdot x_4$.

Size of y: $y + x_3$

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ 3x_3 + 2x_4 \\ -5x_3 + -3x_4 \end{bmatrix}$$
 end
$$\text{while } (x_3 > 0) \text{ do}$$

$$\begin{bmatrix} x_3 \\ y \end{bmatrix} \leftarrow \begin{bmatrix} x_3 - 1 \\ y + 1 \end{bmatrix}$$
 end

- Size of y after second loop:
- ▶ Idea: Analyze different subprograms and combine results
 - y "locally" has size $y + x_3$
- Respect size of variables:
 - x_3 is size bounded by $4 \cdot x_3 + 2 \cdot x_4$.

Size of y:
$$y + x_3 \left[x_3 / size(x_3) \right]$$

Goal: Infer size and time bounds for "real-world" programs

while
$$(x_1 > 0)$$
 do
$$\begin{bmatrix} x_1 \\ x_3 \\ x_4 \end{bmatrix} \leftarrow \begin{bmatrix} x_1 - 1 \\ 3x_3 + 2x_4 \\ -5x_3 + -3x_4 \end{bmatrix}$$
 end
$$\text{while } (x_3 > 0) \text{ do}$$

$$\begin{bmatrix} x_3 \\ y \end{bmatrix} \leftarrow \begin{bmatrix} x_3 - 1 \\ y + 1 \end{bmatrix}$$
 end

- Size of y after second loop:
- ▶ Idea: Analyze different subprograms and combine results
 - y "locally" has size $y + x_3$
- Respect size of variables:
 - x_3 is size bounded by $4 \cdot x_3 + 2 \cdot x_4$.

Size of y:
$$y + 4 \cdot x_3 + 2 \cdot x_4$$

RWTH Aachen University – LuFGi2

Goal: Infer size and time bounds for "real-world" programs

 L_1 ; L_2 ;

```
L_1; L_2; // y has size y+4\cdot x_3+2\cdot x_4
```

Goal: Infer size and time bounds for "real-world" programs

```
L_1;
L_2;
// y has size y + 4 \cdot x_3 + 2 \cdot x_4
while (y > 0) do
    [y] \leftarrow [y-1]
 end
```

RWTH Aachen University – LuFGi2

Goal: Infer size and time bounds for "real-world" programs

```
L_1;
L_2;
// y has size y + 4 \cdot x_3 + 2 \cdot x_4
while (y > 0) do
    [y] \leftarrow [y-1]
 end
```

► How often do we execute the loop?

```
L_1; L_2; // y has size y+4\cdot x_3+2\cdot x_4 while (y > 0) do  \left[ \mathbf{y} \right] \leftarrow \left[ \mathbf{y}-1 \right]  end
```

- ► How often do we execute the loop?
- Idea: Analyze different subprograms and combine results

while
$$(y > 0)$$
 do
$$[y] \leftarrow [y-1]$$
 end

- ► How often do we execute the loop?
- Idea: Analyze different subprograms and combine results

while
$$(y > 0)$$
 do
$$[y] \leftarrow [y-1]$$
 end

- ► How often do we execute the loop?
- Idea: Analyze different subprograms and combine results
 - loop is "locally" executed y times

Goal: Infer size and time bounds for "real-world" programs

while
$$(y > 0)$$
 do $[y] \leftarrow [y-1]$ end

- ► How often do we execute the loop?
- Idea: Analyze different subprograms and combine results
 - loop is "locally" executed y times

Number of loop executions: y

Goal: Infer size and time bounds for "real-world" programs

```
L_1; L_2; // y has size y+4\cdot x_3+2\cdot x_4 while (y > 0) do [y]\leftarrow [y-1] end
```

- ► How often do we execute the loop?
- Idea: Analyze different subprograms and combine results
 - loop is "locally" executed y times
- Respect size of variables:

Number of loop executions: y

Goal: Infer size and time bounds for "real-world" programs

```
L_1; L_2; // y has size y+4\cdot x_3+2\cdot x_4 while (y > 0) do  [y] \leftarrow [y-1]  end
```

- ► How often do we execute the loop?
- Idea: Analyze different subprograms and combine results
 - loop is "locally" executed y times
- Respect size of variables:
 - y is size bounded by $y + 4 \cdot x_3 + 2 \cdot x_4$

Number of loop executions: y

Goal: Infer size and time bounds for "real-world" programs

```
L_1; L_2; // y has size y+4\cdot x_3+2\cdot x_4 while (y > 0) do [y]\leftarrow [y-1] end
```

- ► How often do we execute the loop?
- Idea: Analyze different subprograms and combine results
 - loop is "locally" executed y times
- Respect size of variables:
 - y is size bounded by $y + 4 \cdot x_3 + 2 \cdot x_4$

Number of loop executions: y [y/size(y)]

Goal: Infer size and time bounds for "real-world" programs

```
L_1; L_2; // y has size y+4\cdot x_3+2\cdot x_4 while (y > 0) do [y]\leftarrow [y-1] end
```

- ► How often do we execute the loop?
- Idea: Analyze different subprograms and combine results
 - loop is "locally" executed y times
- Respect size of variables:
 - y is size bounded by $y + 4 \cdot x_3 + 2 \cdot x_4$

Number of loop executions: $y + 4 \cdot x_3 + 2 \cdot x_4$

Goal: Infer size and time bounds for "real-world" programs

```
L_1; L_2; // y has size y+4\cdot x_3+2\cdot x_4 while (y > 0) do [y]\leftarrow [y-1] end
```

- ► How often do we execute the loop?
- Idea: Analyze different subprograms and combine results
 - loop is "locally" executed y times
- Respect size of variables:
 - y is size bounded by $y + 4 \cdot x_3 + 2 \cdot x_4$
- ► How many times do we start to evaluate the loop?

Number of loop executions: $y + 4 \cdot x_3 + 2 \cdot x_4$

Goal: Infer size and time bounds for "real-world" programs

```
L_1; L_2; // y has size y+4\cdot x_3+2\cdot x_4 while (y > 0) do [y]\leftarrow [y-1] end
```

- ► How often do we execute the loop?
- Idea: Analyze different subprograms and combine results
 - loop is "locally" executed y times
- Respect size of variables:
 - y is size bounded by $y + 4 \cdot x_3 + 2 \cdot x_4$
- ► How many times do we start to evaluate the loop?

Number of loop executions: $1 \cdot (y + 4 \cdot x_3 + 2 \cdot x_4)$

Goal: Infer size and time bounds for "real-world" programs

```
L_1; L_2; // y has size y+4\cdot x_3+2\cdot x_4 while (y > 0) do [y]\leftarrow [y-1] end
```

- ► How often do we execute the loop?
- Idea: Analyze different subprograms and combine results
 - loop is "locally" executed y times
- Respect size of variables:
 - y is size bounded by $y + 4 \cdot x_3 + 2 \cdot x_4$
- ► How many times do we start to evaluate the loop?

Number of loop executions: $y + 4 \cdot x_3 + 2 \cdot x_4$

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

RWTH Aachen University – LuFGi2

Overview

Goal: Infer (upper) size and time bounds for "real-world" programs

RWTH Aachen University – LuFGi2

Completeness: Simple Integer Programs

➤ Simple Integer Program:

Completeness: Simple Integer Programs

- ➤ Simple Integer Program:
 - No nested loops

Completeness: Simple Integer Programs

- ➤ Simple Integer Program:
 - No nested loops

- ➤ Simple Integer Program:
 - No nested loops
- ► Solve loops in topological order:

RWTH Aachen University – LuFGi2

- ➤ Simple Integer Program:
 - No nested loops
- ► Solve loops in topological order:

- ▶ Simple Integer Program:
 - No nested loops
- ► Solve loops in topological order:
 - Infer time bound by considering previous size bounds.

- Simple Integer Program:
 - No nested loops
- Solve loops in topological order:
 - Infer time bound by considering previous size bounds.
 - Compute size bounds for loops.

- Simple Integer Program:
 - No nested loops
- ► Solve loops in topological order:
 - Infer time bound by considering previous size bounds.
 - Compute size bounds for loops.
 - Propagate size bounds to subsequent loops.

- Simple Integer Program:
 - No nested loops
- ► Solve loops in topological order:
 - Infer time bound by considering previous size bounds.
 - Compute size bounds for loops.
 - Propagate size bounds to subsequent loops.

- Simple Integer Program:
 - No nested loops
- ► Solve loops in topological order:
 - Infer time bound by considering previous size bounds.
 - Compute size bounds for loops.
 - Propagate size bounds to subsequent loops.

- Simple Integer Program:
 - No nested loops
- ► Solve loops in topological order:
 - Infer time bound by considering previous size bounds.
 - Compute size bounds for loops.
 - Propagate size bounds to subsequent loops.

- Simple Integer Program:
 - No nested loops
- ► Solve loops in topological order:
 - Infer time bound by considering previous size bounds.
 - Compute size bounds for loops.
 - Propagate size bounds to subsequent loops.

- Simple Integer Program:
 - No nested loops
- ► Solve loops in topological order:
 - Infer time bound by considering previous size bounds.
 - Compute size bounds for loops.
 - Propagate size bounds to subsequent loops.

- Simple Integer Program:
 - No nested loops
- ► Solve loops in topological order:
 - Infer time bound by considering previous size bounds.
 - Compute size bounds for loops.
 - Propagate size bounds to subsequent loops.

- Simple Integer Program:
 - No nested loops
- ► Solve loops in topological order:
 - Infer time bound by considering previous size bounds.
 - Compute size bounds for loops.
 - Propagate size bounds to subsequent loops.

- Simple Integer Program:
 - No nested loops
- ► Solve loops in topological order:
 - Infer time bound by considering previous size bounds.
 - Compute size bounds for loops.
 - Propagate size bounds to subsequent loops.

- Simple Integer Program:
 - No nested loops
- Solve loops in topological order:
 - Infer time bound by considering previous size bounds.
 - Compute size bounds for loops.
 - Propagate size bounds to subsequent loops.

▶ Polynomial size and time bounds are computable if all loops are terminating unit prs loops.

Goal: Infer (upper) size and time bounds for "real-world" programs

RWTH Aachen University – LuFGi2

Goal: Infer (upper) size and time bounds for "real-world" programs

Goal: Infer (upper) size and time bounds for "real-world" programs

Goal: Infer (upper) size and time bounds for "real-world" programs

RWTH Aachen University – LuFGi2

► C_Complexity consisting of 519 (mainly linear) benchmarks from TPDB

	$\mathcal{O}(1)$	$\mathcal{O}(n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n^{>2})$	$\mathcal{O}(EXP)$	$<\infty$	AVG(s)
Loopus	17	171	50	6	0	244	0.40
KoAT1	25	170	74	12	8	289	0.96
CoFloCo	22	197	66	5	0	290	0.59
MaxCore	23	220	67	7	0	317	1.96

► KoAT1: original KoAT implementation [TOPLAS' 16]

► C_Complexity consisting of 519 (mainly linear) benchmarks from TPDB

	$\mathcal{O}(1)$	$\mathcal{O}(n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n^{>2})$	$\mathcal{O}(EXP)$	$<\infty$	AVG(s)
Loopus	17	171	50	6	0	244	0.40
KoAT1	25	170	74	12	8	289	0.96
CoFloCo	22	197	66	5	0	290	0.59
MaxCore	23	220	67	7	0	317	1.96
KoAT2	26	232	70	15	5	348	8.29

► KoAT1: original KoAT implementation [TOPLAS' 16]

► KoAT2: reimplementation of KoAT1 [RH '22] + [IJCAR '22]

► C_Complexity consisting of 519 (mainly linear) benchmarks from TPDB

	$\mathcal{O}(1)$	$\mathcal{O}(n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n^{>2})$	$ \mathcal{O}(EXP) $	$ <\infty$	AVG(s)
Loopus	17	171	50	6	0	244	0.40
KoAT1	25	170	74	12	8	289	0.96
CoFloCo	22	197	66	5	0	290	0.59
MaxCore	23	220	67	7	0	317	1.96
KoAT2	26	232	70	15	5	348	8.29
KoAT2 + SIZE	26	233	71	25	3	358	9.97

► KoAT1: original KoAT implementation [TOPLAS' 16]

► KoAT2: reimplementation of KoAT1 [RH '22] + [IJCAR '22]

► C_Complexity consisting of 519 (mainly linear) benchmarks from TPDB

	$\mathcal{O}(1)$	$\mathcal{O}(n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n^{>2})$	$\mathcal{O}(EXP)$	$<\infty$	AVG(s)
Loopus	17	171	50	6	0	244	0.40
KoAT1	25	170	74	12	8	289	0.96
CoFloCo	22	197	66	5	0	290	0.59
MaxCore	23	220	67	7	0	317	1.96
KoAT2	26	232	70	15	5	348	8.29
KoAT2 + SIZE	26	233	71	25	3	358	9.97

- ► KoAT1: original KoAT implementation [TOPLAS' 16]
- ► KoAT2: reimplementation of KoAT1 [RH '22] + [IJCAR '22]
- ► At most 386 benchmarks might terminate

► C_Complexity consisting of 519 (mainly linear) benchmarks from TPDB

	$\mathcal{O}(1)$	$\mathcal{O}(n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n^{>2})$	$\mathcal{O}(EXP)$	$ <\infty$	AVG(s)	succ. rate
Loopus	17	171	50	6	0	244	0.40	62%
KoAT1	25	170	74	12	8	289	0.96	74%
CoFloCo	22	197	66	5	0	290	0.59	75%
MaxCore	23	220	67	7	0	317	1.96	80%
KoAT2	26	232	70	15	5	348	8.29	85%
KoAT2 + SIZE	26	233	71	25	3	358	9.97	89%

- ► KoAT1: original KoAT implementation [TOPLAS' 16]
- ► KoAT2: reimplementation of KoAT1 [RH '22] + [IJCAR '22]
- ► At most 386 benchmarks might terminate

► C_Complexity consisting of 519 (mainly linear) benchmarks from TPDB

	$\mathcal{O}(1)$	$\mathcal{O}(n)$	$\mathcal{O}(n^2)$	$\mathcal{O}(n^{>2})$	$\mathcal{O}(EXP)$	$ <\infty$	AVG(s)	succ. rate
Loopus	17	171	50	6	0	244	0.40	62%
KoAT1	25	170	74	12	8	289	0.96	74%
CoFloCo	22	197	66	5	0	290	0.59	75%
MaxCore	23	220	67	7	0	317	1.96	80%
KoAT2	26	232	70	15	5	348	8.29	85%
KoAT2 + SIZE	26	233	71	25	3	358	9.97	89%

- ► KoAT1: original KoAT implementation [TOPLAS' 16]
- ► KoAT2: reimplementation of KoAT1 [RH '22] + [IJCAR '22]
- ► At most 386 benchmarks might terminate
- ► KoAT2 + SIZE solves 89% of benchmarks which might terminate.

- ▶ Conclusion
 - Introduced modular approach for complexity analysis combining

- ▶ Conclusion
 - Introduced modular approach for complexity analysis combining
 - Procedure to infer size bounds by closed forms

- ▶ Conclusion
 - Introduced modular approach for complexity analysis combining
 - Procedure to infer size bounds by closed time bound computations forms

- Conclusion
 - Introduced modular approach for complexity analysis combining
 - Procedure to infer size bounds by closed time bound computations forms
 - Handle loops with non-linear arithmetic

- Conclusion
 - Introduced modular approach for complexity analysis combining
 - Procedure to infer size bounds by closed time bound computations forms
 - Handle loops with non-linear arithmetic
 - Complete for a large class of integer programs

- Introduced modular approach for complexity analysis combining
 - Procedure to infer size bounds by closed time bound computations forms
- Handle loops with non-linear arithmetic
- Complete for a large class of integer programs
- KoAT2 outperforms other state-of-the-art tools

Conclusion

- Introduced modular approach for complexity analysis combining
 - Procedure to infer size bounds by closed time bound computations forms
- Handle loops with non-linear arithmetic
- Complete for a large class of integer programs
- KoAT2 outperforms other state-of-the-art tools

https://koat.verify.rwth-aachen.de/size

- Conclusion
 - Introduced modular approach for complexity analysis combining
 - Procedure to infer size bounds by closed time bound computations forms
 - Handle loops with non-linear arithmetic
 - Complete for a large class of integer programs
 - KoAT2 outperforms other state-of-the-art tools

https://koat.verify.rwth-aachen.de/size

```
Analysis of Integer Programs
                                                 (GOAL COMPLETIV)
(GOAL COMPLETIV)
(GOAL COMPLETIVO)
(GOAL
(GOAL)
```

RWTH Aachen University – LuFGi2

- Conclusion
 - Introduced modular approach for complexity analysis combining
 - Procedure to infer size bounds by closed time bound computations forms
 - Handle loops with non-linear arithmetic
 - Complete for a large class of integer programs
 - KoAT2 outperforms other state-of-the-art tools

https://koat.verify.rwth-aachen.de/size

Thank You!

RWTH Aachen University – LuFGi2