
KoAT: An Automatic Complexity Analysis Tool for Integer
Programs
Workshop on Termination 2023

Nils Lommen, Eleanore Meyer, and Jürgen Giesl

1 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Motivation

Goal: Infer (upper) runtime bounds for “real­world” programs

while (x3 > 0) do[
x1
x2

]
←

[
x4
x25

]
while (x21 < x2) do[

x1
x2

]
←

[
2 · x1
3 · x2

]
end[
x3
]
←

[
x3 − 1

]
end

▶ Does this program terminate?
▶ How often do we execute the inner loop?

• Solution: Use KoAT!
• Open­source complexity analysis tool for
Integer Transition Systems

2 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Motivation

Goal: Infer (upper) runtime bounds for “real­world” programs

while (x3 > 0) do[
x1
x2

]
←

[
x4
x25

]
while (x21 < x2) do[

x1
x2

]
←

[
2 · x1
3 · x2

]
end[
x3
]
←

[
x3 − 1

]
end

▶ Does this program terminate?

▶ How often do we execute the inner loop?

• Solution: Use KoAT!
• Open­source complexity analysis tool for
Integer Transition Systems

2 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Motivation

Goal: Infer (upper) runtime bounds for “real­world” programs

while (x3 > 0) do[
x1
x2

]
←

[
x4
x25

]
while (x21 < x2) do[

x1
x2

]
←

[
2 · x1
3 · x2

]
end[
x3
]
←

[
x3 − 1

]
end

▶ Does this program terminate?
▶ How often do we execute the inner loop?

• Solution: Use KoAT!
• Open­source complexity analysis tool for
Integer Transition Systems

2 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Motivation

Goal: Infer (upper) runtime bounds for “real­world” programs

while (x3 > 0) do[
x1
x2

]
←

[
x4
x25

]
while (x21 < x2) do[

x1
x2

]
←

[
2 · x1
3 · x2

]
end[
x3
]
←

[
x3 − 1

]
end

▶ Does this program terminate?
▶ How often do we execute the inner loop?
• Solution: Use KoAT!

• Open­source complexity analysis tool for
Integer Transition Systems

2 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Motivation

Goal: Infer (upper) runtime bounds for “real­world” programs

while (x3 > 0) do[
x1
x2

]
←

[
x4
x25

]
while (x21 < x2) do[

x1
x2

]
←

[
2 · x1
3 · x2

]
end[
x3
]
←

[
x3 − 1

]
end

▶ Does this program terminate?
▶ How often do we execute the inner loop?
• Solution: Use KoAT!
• Open­source complexity analysis tool for
Integer Transition Systems

2 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Overview

▶ KoAT uses

• a modular approach to compute time bounds combining

– a procedure to handle twn­loops
[IJCAR ’22]

– MΦRFs [RH ’22]

• a modular approach to compute size bounds combining

– a procedure using closed­forms
[FroCoS ’23]

– changed accumulated size bounds
[TOPLAS ’16]

• local control flow­refinement by iRankFinder [RH ’22].

3 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Overview

▶ KoAT uses
• a modular approach to compute time bounds combining

– a procedure to handle twn­loops
[IJCAR ’22]

– MΦRFs [RH ’22]

• a modular approach to compute size bounds combining

– a procedure using closed­forms
[FroCoS ’23]

– changed accumulated size bounds
[TOPLAS ’16]

• local control flow­refinement by iRankFinder [RH ’22].

3 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Overview

▶ KoAT uses
• a modular approach to compute time bounds combining

– a procedure to handle twn­loops
[IJCAR ’22]

– MΦRFs [RH ’22]

• a modular approach to compute size bounds combining

– a procedure using closed­forms
[FroCoS ’23]

– changed accumulated size bounds
[TOPLAS ’16]

• local control flow­refinement by iRankFinder [RH ’22].

3 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Overview

▶ KoAT uses
• a modular approach to compute time bounds combining

– a procedure to handle twn­loops
[IJCAR ’22]

– MΦRFs [RH ’22]

• a modular approach to compute size bounds combining

– a procedure using closed­forms
[FroCoS ’23]

– changed accumulated size bounds
[TOPLAS ’16]

• local control flow­refinement by iRankFinder [RH ’22].

3 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Overview

▶ KoAT uses
• a modular approach to compute time bounds combining

– a procedure to handle twn­loops
[IJCAR ’22]

– MΦRFs [RH ’22]

• a modular approach to compute size bounds combining

– a procedure using closed­forms
[FroCoS ’23]

– changed accumulated size bounds
[TOPLAS ’16]

• local control flow­refinement by iRankFinder [RH ’22].

3 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Overview

▶ KoAT uses
• a modular approach to compute time bounds combining

– a procedure to handle twn­loops
[IJCAR ’22]

– MΦRFs [RH ’22]

• a modular approach to compute size bounds combining

– a procedure using closed­forms
[FroCoS ’23]

– changed accumulated size bounds
[TOPLAS ’16]

• local control flow­refinement by iRankFinder [RH ’22].

3 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Overview

▶ KoAT uses
• a modular approach to compute time bounds combining

– a procedure to handle twn­loops
[IJCAR ’22]

– MΦRFs [RH ’22]

• a modular approach to compute size bounds combining

– a procedure using closed­forms
[FroCoS ’23]

– changed accumulated size bounds
[TOPLAS ’16]

• local control flow­refinement by iRankFinder [RH ’22].

3 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Overview

▶ KoAT uses
• a modular approach to compute time bounds combining

– a procedure to handle twn­loops
[IJCAR ’22]

– MΦRFs [RH ’22]

• a modular approach to compute size bounds combining

– a procedure using closed­forms
[FroCoS ’23]

– changed accumulated size bounds
[TOPLAS ’16]

• local control flow­refinement by iRankFinder [RH ’22].

3 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Overview

▶ KoAT uses
• a modular approach to compute time bounds combining

– a procedure to handle twn­loops
[IJCAR ’22]

– MΦRFs [RH ’22]

• a modular approach to compute size bounds combining

– a procedure using closed­forms
[FroCoS ’23]

– changed accumulated size bounds
[TOPLAS ’16]

• local control flow­refinement by iRankFinder [RH ’22].

3 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture

▶ Translation to ITS

C Integer

LLVM ITS

Upper Bound

Termination

KoAT
clang

llvm2kittel

AProVE

while (x3 > 0) do[
x1
x2

]
←

[
x4
x25

]
while (x21 < x2) do[

x1
x2

]
←

[
2 · x1
3 · x2

]
end[
x3
]
←

[
x3 − 1

]
end

ℓ0 ℓ1 ℓ2
t0

t1 : τ = x3 > 0
η(x1) = x4
η(x2) = x25

t2 : η(x3) = x3 − 1
t3 : τ = x21 < x2
η(x1) = 2 · x1
η(x2) = 3 · x2

4 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture

▶ Translation to ITS

C Integer LLVM

ITS

Upper Bound

Termination

KoAT

clang

llvm2kittel

AProVE

while (x3 > 0) do[
x1
x2

]
←

[
x4
x25

]
while (x21 < x2) do[

x1
x2

]
←

[
2 · x1
3 · x2

]
end[
x3
]
←

[
x3 − 1

]
end

ℓ0 ℓ1 ℓ2
t0

t1 : τ = x3 > 0
η(x1) = x4
η(x2) = x25

t2 : η(x3) = x3 − 1
t3 : τ = x21 < x2
η(x1) = 2 · x1
η(x2) = 3 · x2

4 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture

▶ Translation to ITS

C Integer LLVM ITS

Upper Bound

Termination

KoAT

clang
llvm2kittel

AProVE

while (x3 > 0) do[
x1
x2

]
←

[
x4
x25

]
while (x21 < x2) do[

x1
x2

]
←

[
2 · x1
3 · x2

]
end[
x3
]
←

[
x3 − 1

]
end

ℓ0 ℓ1 ℓ2
t0

t1 : τ = x3 > 0
η(x1) = x4
η(x2) = x25

t2 : η(x3) = x3 − 1
t3 : τ = x21 < x2
η(x1) = 2 · x1
η(x2) = 3 · x2

4 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture

▶ Translation to ITS

C Integer LLVM ITS

Upper Bound

Termination

KoAT
clang

llvm2kittel

AProVE

while (x3 > 0) do[
x1
x2

]
←

[
x4
x25

]
while (x21 < x2) do[

x1
x2

]
←

[
2 · x1
3 · x2

]
end[
x3
]
←

[
x3 − 1

]
end

ℓ0 ℓ1 ℓ2
t0

t1 : τ = x3 > 0
η(x1) = x4
η(x2) = x25

t2 : η(x3) = x3 − 1
t3 : τ = x21 < x2
η(x1) = 2 · x1
η(x2) = 3 · x2

4 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture

▶ Translation to ITS

C Integer LLVM ITS

Upper Bound

Termination

KoAT
clang

llvm2kittel

AProVE

while (x3 > 0) do[
x1
x2

]
←

[
x4
x25

]
while (x21 < x2) do[

x1
x2

]
←

[
2 · x1
3 · x2

]
end[
x3
]
←

[
x3 − 1

]
end

ℓ0 ℓ1 ℓ2
t0

t1 : τ = x3 > 0
η(x1) = x4
η(x2) = x25

t2 : η(x3) = x3 − 1
t3 : τ = x21 < x2
η(x1) = 2 · x1
η(x2) = 3 · x2

4 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture

▶ Translation to ITS

C Integer LLVM ITS

Upper Bound

Termination

KoAT
clang

llvm2kittel

AProVE

while (x3 > 0) do[
x1
x2

]
←

[
x4
x25

]
while (x21 < x2) do[

x1
x2

]
←

[
2 · x1
3 · x2

]
end[
x3
]
←

[
x3 − 1

]
end

ℓ0 ℓ1 ℓ2

t0

t1 : τ = x3 > 0
η(x1) = x4
η(x2) = x25

t2 : η(x3) = x3 − 1
t3 : τ = x21 < x2
η(x1) = 2 · x1
η(x2) = 3 · x2

4 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture

▶ Translation to ITS

C Integer LLVM ITS

Upper Bound

Termination

KoAT
clang

llvm2kittel

AProVE

while (x3 > 0) do[
x1
x2

]
←

[
x4
x25

]
while (x21 < x2) do[

x1
x2

]
←

[
2 · x1
3 · x2

]
end[
x3
]
←

[
x3 − 1

]
end

ℓ0 ℓ1 ℓ2
t0

t1 : τ = x3 > 0
η(x1) = x4
η(x2) = x25

t2 : η(x3) = x3 − 1
t3 : τ = x21 < x2
η(x1) = 2 · x1
η(x2) = 3 · x2

4 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture

▶ Translation to ITS

C Integer LLVM ITS

Upper Bound

Termination

KoAT
clang

llvm2kittel

AProVE

while (x3 > 0) do[
x1
x2

]
←

[
x4
x25

]
while (x21 < x2) do[

x1
x2

]
←

[
2 · x1
3 · x2

]
end[
x3
]
←

[
x3 − 1

]
end

ℓ0 ℓ1 ℓ2
t0

t1 : τ = x3 > 0
η(x1) = x4
η(x2) = x25

t2 : η(x3) = x3 − 1

t3 : τ = x21 < x2
η(x1) = 2 · x1
η(x2) = 3 · x2

4 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture

▶ Translation to ITS

C Integer LLVM ITS

Upper Bound

Termination

KoAT
clang

llvm2kittel

AProVE

while (x3 > 0) do[
x1
x2

]
←

[
x4
x25

]
while (x21 < x2) do[

x1
x2

]
←

[
2 · x1
3 · x2

]
end[
x3
]
←

[
x3 − 1

]
end

ℓ0 ℓ1 ℓ2
t0

t1 : τ = x3 > 0
η(x1) = x4
η(x2) = x25

t2 : η(x3) = x3 − 1
t3 : τ = x21 < x2
η(x1) = 2 · x1
η(x2) = 3 · x2

4 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture

▶ Preprocess Programs:

• Invariants by Apron
• Remove unsatisfiable Transitions
• Remove unreachable Locations
• many more . . .

▶ Time bounds: How many executions?
▶ Size bounds: What is the value of a
variable after evaluating transition?

▶ Analyze SCCs one after another
▶ Propagate information from “previous”
SCCs to “later” SCCs via size bounds
[TOPLAS ’16]

ℓ0

…

……

…

……

…

……

5 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture

▶ Preprocess Programs:
• Invariants by Apron

• Remove unsatisfiable Transitions
• Remove unreachable Locations
• many more . . .

▶ Time bounds: How many executions?
▶ Size bounds: What is the value of a
variable after evaluating transition?

▶ Analyze SCCs one after another
▶ Propagate information from “previous”
SCCs to “later” SCCs via size bounds
[TOPLAS ’16]

ℓ0

…

……

…

……

…

……

5 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture

▶ Preprocess Programs:
• Invariants by Apron
• Remove unsatisfiable Transitions

• Remove unreachable Locations
• many more . . .

▶ Time bounds: How many executions?
▶ Size bounds: What is the value of a
variable after evaluating transition?

▶ Analyze SCCs one after another
▶ Propagate information from “previous”
SCCs to “later” SCCs via size bounds
[TOPLAS ’16]

ℓ0

…

……

…

……

…

……

5 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture

▶ Preprocess Programs:
• Invariants by Apron
• Remove unsatisfiable Transitions
• Remove unreachable Locations

• many more . . .

▶ Time bounds: How many executions?
▶ Size bounds: What is the value of a
variable after evaluating transition?

▶ Analyze SCCs one after another
▶ Propagate information from “previous”
SCCs to “later” SCCs via size bounds
[TOPLAS ’16]

ℓ0

…

……

…

……

…

……

5 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture

▶ Preprocess Programs:
• Invariants by Apron
• Remove unsatisfiable Transitions
• Remove unreachable Locations
• many more . . .

▶ Time bounds: How many executions?
▶ Size bounds: What is the value of a
variable after evaluating transition?

▶ Analyze SCCs one after another
▶ Propagate information from “previous”
SCCs to “later” SCCs via size bounds
[TOPLAS ’16]

ℓ0

…

……

…

……

…

……

5 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture

▶ Preprocess Programs:
• Invariants by Apron
• Remove unsatisfiable Transitions
• Remove unreachable Locations
• many more . . .

▶ Time bounds: How many executions?

▶ Size bounds: What is the value of a
variable after evaluating transition?

▶ Analyze SCCs one after another
▶ Propagate information from “previous”
SCCs to “later” SCCs via size bounds
[TOPLAS ’16]

ℓ0

…

……

…

……

…

……

5 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture

▶ Preprocess Programs:
• Invariants by Apron
• Remove unsatisfiable Transitions
• Remove unreachable Locations
• many more . . .

▶ Time bounds: How many executions?
▶ Size bounds: What is the value of a
variable after evaluating transition?

▶ Analyze SCCs one after another
▶ Propagate information from “previous”
SCCs to “later” SCCs via size bounds
[TOPLAS ’16]

ℓ0

…

……

…

……

…

……

5 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture

▶ Preprocess Programs:
• Invariants by Apron
• Remove unsatisfiable Transitions
• Remove unreachable Locations
• many more . . .

▶ Time bounds: How many executions?
▶ Size bounds: What is the value of a
variable after evaluating transition?

▶ Analyze SCCs one after another
▶ Propagate information from “previous”
SCCs to “later” SCCs via size bounds
[TOPLAS ’16]

ℓ0

…

……

…

……

…

……

5 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture

▶ Preprocess Programs:
• Invariants by Apron
• Remove unsatisfiable Transitions
• Remove unreachable Locations
• many more . . .

▶ Time bounds: How many executions?
▶ Size bounds: What is the value of a
variable after evaluating transition?

▶ Analyze SCCs one after another
▶ Propagate information from “previous”
SCCs to “later” SCCs via size bounds
[TOPLAS ’16]

ℓ0

…

……

…

……

…

……

5 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture

▶ Preprocess Programs:
• Invariants by Apron
• Remove unsatisfiable Transitions
• Remove unreachable Locations
• many more . . .

▶ Time bounds: How many executions?
▶ Size bounds: What is the value of a
variable after evaluating transition?

▶ Analyze SCCs one after another
▶ Propagate information from “previous”
SCCs to “later” SCCs via size bounds
[TOPLAS ’16]

ℓ0

…

……

…

……

…

……

5 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture

▶ Preprocess Programs:
• Invariants by Apron
• Remove unsatisfiable Transitions
• Remove unreachable Locations
• many more . . .

▶ Time bounds: How many executions?
▶ Size bounds: What is the value of a
variable after evaluating transition?

▶ Analyze SCCs one after another
▶ Propagate information from “previous”
SCCs to “later” SCCs via size bounds
[TOPLAS ’16]

ℓ0

…

……

…

……

…

……

5 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture

▶ Preprocess Programs:
• Invariants by Apron
• Remove unsatisfiable Transitions
• Remove unreachable Locations
• many more . . .

▶ Time bounds: How many executions?
▶ Size bounds: What is the value of a
variable after evaluating transition?

▶ Analyze SCCs one after another

▶ Propagate information from “previous”
SCCs to “later” SCCs via size bounds
[TOPLAS ’16]

ℓ0

…

……

…

……

…

……

5 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture

▶ Preprocess Programs:
• Invariants by Apron
• Remove unsatisfiable Transitions
• Remove unreachable Locations
• many more . . .

▶ Time bounds: How many executions?
▶ Size bounds: What is the value of a
variable after evaluating transition?

▶ Analyze SCCs one after another

▶ Propagate information from “previous”
SCCs to “later” SCCs via size bounds
[TOPLAS ’16]

ℓ0

…

……

…

……

…

……

5 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture

▶ Preprocess Programs:
• Invariants by Apron
• Remove unsatisfiable Transitions
• Remove unreachable Locations
• many more . . .

▶ Time bounds: How many executions?
▶ Size bounds: What is the value of a
variable after evaluating transition?

▶ Analyze SCCs one after another

▶ Propagate information from “previous”
SCCs to “later” SCCs via size bounds
[TOPLAS ’16]

ℓ0

…

……

…

……

…

……

5 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture

▶ Preprocess Programs:
• Invariants by Apron
• Remove unsatisfiable Transitions
• Remove unreachable Locations
• many more . . .

▶ Time bounds: How many executions?
▶ Size bounds: What is the value of a
variable after evaluating transition?

▶ Analyze SCCs one after another
▶ Propagate information from “previous”
SCCs to “later” SCCs via size bounds
[TOPLAS ’16]

ℓ0

…

……

…

……

…

……

5 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture

▶ Preprocess Programs:
• Invariants by Apron
• Remove unsatisfiable Transitions
• Remove unreachable Locations
• many more . . .

▶ Time bounds: How many executions?
▶ Size bounds: What is the value of a
variable after evaluating transition?

▶ Analyze SCCs one after another
▶ Propagate information from “previous”
SCCs to “later” SCCs via size bounds
[TOPLAS ’16]

ℓ0

…

……

…

……

…

……

5 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture – Analyzing an SCC

▶ Alternatingly compute time and size bounds

• Compute initial global size bounds
• Compute as many finite global time bounds as
possible
• Improve global size bounds
• Improve global time bounds
• Improve global size bounds
• …

▶ Possibly apply sub­SCC CFR with iRankFinder
▶ Analysis results are passed on via global size
bounds of connecting transitions

…

…

…

…

6 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture – Analyzing an SCC

▶ Alternatingly compute time and size bounds
• Compute initial global size bounds

• Compute as many finite global time bounds as
possible
• Improve global size bounds
• Improve global time bounds
• Improve global size bounds
• …

▶ Possibly apply sub­SCC CFR with iRankFinder
▶ Analysis results are passed on via global size
bounds of connecting transitions

…

…

…

…

6 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture – Analyzing an SCC

▶ Alternatingly compute time and size bounds
• Compute initial global size bounds
• Compute as many finite global time bounds as
possible

• Improve global size bounds
• Improve global time bounds
• Improve global size bounds
• …

▶ Possibly apply sub­SCC CFR with iRankFinder
▶ Analysis results are passed on via global size
bounds of connecting transitions

…

…

…

…

6 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture – Analyzing an SCC

▶ Alternatingly compute time and size bounds
• Compute initial global size bounds
• Compute as many finite global time bounds as
possible
• Improve global size bounds

• Improve global time bounds
• Improve global size bounds
• …

▶ Possibly apply sub­SCC CFR with iRankFinder
▶ Analysis results are passed on via global size
bounds of connecting transitions

…

…

…

…

6 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture – Analyzing an SCC

▶ Alternatingly compute time and size bounds
• Compute initial global size bounds
• Compute as many finite global time bounds as
possible
• Improve global size bounds
• Improve global time bounds

• Improve global size bounds
• …

▶ Possibly apply sub­SCC CFR with iRankFinder
▶ Analysis results are passed on via global size
bounds of connecting transitions

…

…

…

…

6 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture – Analyzing an SCC

▶ Alternatingly compute time and size bounds
• Compute initial global size bounds
• Compute as many finite global time bounds as
possible
• Improve global size bounds
• Improve global time bounds
• Improve global size bounds

• …
▶ Possibly apply sub­SCC CFR with iRankFinder
▶ Analysis results are passed on via global size
bounds of connecting transitions

…

…

…

…

6 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture – Analyzing an SCC

▶ Alternatingly compute time and size bounds
• Compute initial global size bounds
• Compute as many finite global time bounds as
possible
• Improve global size bounds
• Improve global time bounds
• Improve global size bounds
• …

▶ Possibly apply sub­SCC CFR with iRankFinder
▶ Analysis results are passed on via global size
bounds of connecting transitions

…

…

…

…

6 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture – Analyzing an SCC

▶ Alternatingly compute time and size bounds
• Compute initial global size bounds
• Compute as many finite global time bounds as
possible
• Improve global size bounds
• Improve global time bounds
• Improve global size bounds
• …

▶ Possibly apply sub­SCC CFR with iRankFinder

▶ Analysis results are passed on via global size
bounds of connecting transitions

…

…

…

…

6 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



General Architecture – Analyzing an SCC

▶ Alternatingly compute time and size bounds
• Compute initial global size bounds
• Compute as many finite global time bounds as
possible
• Improve global size bounds
• Improve global time bounds
• Improve global size bounds
• …

▶ Possibly apply sub­SCC CFR with iRankFinder
▶ Analysis results are passed on via global size
bounds of connecting transitions

…

…

…

…

6 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Overview

▶ KoAT uses
• a modular approach to compute time bounds combining

– a procedure to handle twn­loops
[IJCAR ’22]

– MΦRFs [RH ’22]

• a modular approach to compute size bounds combining

– a procedure using closed­forms
[FroCoS ’23]

– changed accumulated size bounds
[TOPLAS ’16]

• local control flow­refinement by iRankFinder [RH ’22].

7 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Analyzing Programs: Time Bounds

▶ Triangular Weakly Non­Linear Loops [IJCAR ’22]

▶ Multiphase­Linear Ranking Functions [Ben­Amram, Genaim] & [RH ’22]

• Try to bound t< w.r.t. subprogram T ′
• t< decreases value of ranking function
• T⊆ \ {t<} does not increase value of ranking function
• Lift local time bound for subprogram to time bound for complete program

ℓ0 ℓ1 ℓ2
t0

t1 : τ = x3 > 0
η(x1) = x4
η(x2) = x25

t2 : η(x3) = x3 − 1
t3 : τ = x21 < x2
η(x1) = 2 · x1
η(x2) = 3 · x2

▶ t< = t2 and T = {t1, t2, t3}
▶ ranking function x3 yields
well­founded order on N

▶ consider entry transition t0

8 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Analyzing Programs: Time Bounds

▶ Triangular Weakly Non­Linear Loops [IJCAR ’22]
▶ Multiphase­Linear Ranking Functions [Ben­Amram, Genaim] & [RH ’22]

• Try to bound t< w.r.t. subprogram T ′
• t< decreases value of ranking function
• T⊆ \ {t<} does not increase value of ranking function
• Lift local time bound for subprogram to time bound for complete program

ℓ0 ℓ1 ℓ2
t0

t1 : τ = x3 > 0
η(x1) = x4
η(x2) = x25

t2 : η(x3) = x3 − 1
t3 : τ = x21 < x2
η(x1) = 2 · x1
η(x2) = 3 · x2

▶ t< = t2 and T = {t1, t2, t3}
▶ ranking function x3 yields
well­founded order on N

▶ consider entry transition t0

8 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Analyzing Programs: Time Bounds

▶ Triangular Weakly Non­Linear Loops [IJCAR ’22]
▶ Multiphase­Linear Ranking Functions [Ben­Amram, Genaim] & [RH ’22]
• Try to bound t< w.r.t. subprogram T ′

• t< decreases value of ranking function
• T⊆ \ {t<} does not increase value of ranking function
• Lift local time bound for subprogram to time bound for complete program

ℓ0 ℓ1 ℓ2
t0

t1 : τ = x3 > 0
η(x1) = x4
η(x2) = x25

t2 : η(x3) = x3 − 1
t3 : τ = x21 < x2
η(x1) = 2 · x1
η(x2) = 3 · x2

▶ t< = t2 and T = {t1, t2, t3}
▶ ranking function x3 yields
well­founded order on N

▶ consider entry transition t0

8 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Analyzing Programs: Time Bounds

▶ Triangular Weakly Non­Linear Loops [IJCAR ’22]
▶ Multiphase­Linear Ranking Functions [Ben­Amram, Genaim] & [RH ’22]
• Try to bound t< w.r.t. subprogram T ′

• t< decreases value of ranking function
• T⊆ \ {t<} does not increase value of ranking function
• Lift local time bound for subprogram to time bound for complete program

ℓ0 ℓ1 ℓ2
t0

t1 : τ = x3 > 0
η(x1) = x4
η(x2) = x25

t2 : η(x3) = x3 − 1
t3 : τ = x21 < x2
η(x1) = 2 · x1
η(x2) = 3 · x2

▶ t< = t2 and T = {t1, t2, t3}
▶ ranking function x3 yields
well­founded order on N

▶ consider entry transition t0

8 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Analyzing Programs: Time Bounds

▶ Triangular Weakly Non­Linear Loops [IJCAR ’22]
▶ Multiphase­Linear Ranking Functions [Ben­Amram, Genaim] & [RH ’22]
• Try to bound t< w.r.t. subprogram T ′

• t< decreases value of ranking function
• T⊆ \ {t<} does not increase value of ranking function
• Lift local time bound for subprogram to time bound for complete program

ℓ0 ℓ1 ℓ2
t0

t1 : τ = x3 > 0
η(x1) = x4
η(x2) = x25

t2 : η(x3) = x3 − 1
t3 : τ = x21 < x2
η(x1) = 2 · x1
η(x2) = 3 · x2

▶ t< = t2 and T = {t1, t2, t3}

▶ ranking function x3 yields
well­founded order on N

▶ consider entry transition t0

8 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Analyzing Programs: Time Bounds

▶ Triangular Weakly Non­Linear Loops [IJCAR ’22]
▶ Multiphase­Linear Ranking Functions [Ben­Amram, Genaim] & [RH ’22]
• Try to bound t< w.r.t. subprogram T ′
• t< decreases value of ranking function

• T⊆ \ {t<} does not increase value of ranking function
• Lift local time bound for subprogram to time bound for complete program

ℓ0 ℓ1 ℓ2
t0

t1 : τ = x3 > 0
η(x1) = x4
η(x2) = x25

t2 : η(x3) = x3 − 1
t3 : τ = x21 < x2
η(x1) = 2 · x1
η(x2) = 3 · x2

▶ t< = t2 and T = {t1, t2, t3}

▶ ranking function x3 yields
well­founded order on N

▶ consider entry transition t0

8 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Analyzing Programs: Time Bounds

▶ Triangular Weakly Non­Linear Loops [IJCAR ’22]
▶ Multiphase­Linear Ranking Functions [Ben­Amram, Genaim] & [RH ’22]
• Try to bound t< w.r.t. subprogram T ′
• t< decreases value of ranking function
• T⊆ \ {t<} does not increase value of ranking function

• Lift local time bound for subprogram to time bound for complete program

ℓ0 ℓ1 ℓ2
t0

t1 : τ = x3 > 0
η(x1) = x4
η(x2) = x25

t2 : η(x3) = x3 − 1
t3 : τ = x21 < x2
η(x1) = 2 · x1
η(x2) = 3 · x2

▶ t< = t2 and T = {t1, t2, t3}

▶ ranking function x3 yields
well­founded order on N

▶ consider entry transition t0

8 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Analyzing Programs: Time Bounds

▶ Triangular Weakly Non­Linear Loops [IJCAR ’22]
▶ Multiphase­Linear Ranking Functions [Ben­Amram, Genaim] & [RH ’22]
• Try to bound t< w.r.t. subprogram T ′
• t< decreases value of ranking function
• T⊆ \ {t<} does not increase value of ranking function

• Lift local time bound for subprogram to time bound for complete program

ℓ0 ℓ1 ℓ2
t0

t1 : τ = x3 > 0
η(x1) = x4
η(x2) = x25

t2 : η(x3) = x3 − 1
t3 : τ = x21 < x2
η(x1) = 2 · x1
η(x2) = 3 · x2

▶ t< = t2 and T = {t1, t2, t3}
▶ ranking function x3 yields
well­founded order on N

▶ consider entry transition t0

8 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Analyzing Programs: Time Bounds

▶ Triangular Weakly Non­Linear Loops [IJCAR ’22]
▶ Multiphase­Linear Ranking Functions [Ben­Amram, Genaim] & [RH ’22]
• Try to bound t< w.r.t. subprogram T ′
• t< decreases value of ranking function
• T⊆ \ {t<} does not increase value of ranking function
• Lift local time bound for subprogram to time bound for complete program

ℓ0 ℓ1 ℓ2
t0

t1 : τ = x3 > 0
η(x1) = x4
η(x2) = x25

t2 : η(x3) = x3 − 1
t3 : τ = x21 < x2
η(x1) = 2 · x1
η(x2) = 3 · x2

▶ t< = t2 and T = {t1, t2, t3}
▶ ranking function x3 yields
well­founded order on N

▶ consider entry transition t0

8 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Analyzing Programs: Time Bounds

▶ Triangular Weakly Non­Linear Loops [IJCAR ’22]
▶ Multiphase­Linear Ranking Functions [Ben­Amram, Genaim] & [RH ’22]
• Try to bound t< w.r.t. subprogram T ′
• t< decreases value of ranking function
• T⊆ \ {t<} does not increase value of ranking function
• Lift local time bound for subprogram to time bound for complete program

ℓ0 ℓ1 ℓ2
t0

t1 : τ = x3 > 0
η(x1) = x4
η(x2) = x25

t2 : η(x3) = x3 − 1
t3 : τ = x21 < x2
η(x1) = 2 · x1
η(x2) = 3 · x2

▶ t< = t2 and T = {t1, t2, t3}
▶ ranking function x3 yields
well­founded order on N

▶ consider entry transition t0

8 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Overview

▶ KoAT uses
• a modular approach to compute time bounds combining

– a procedure to handle twn­loops
[IJCAR ’22]

– MΦRFs [RH ’22]

• a modular approach to compute size bounds combining

– a procedure using closed­forms
[FroCoS ’23]

– changed accumulated size bounds
[TOPLAS ’16]

• local control flow­refinement by iRankFinder [RH ’22].

9 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Analyzing Programs: Size Bounds

▶ Size bounds by closed forms [FroCoS ’23]

• Compute closed form for loop
• Over­approximate closed form to non­negative, weakly monotonic increasing
expression
• Substitute n by runtime bound

▶ Changed accumulated size bounds [TOPLAS ’16]

• Construct variable dependence graph
• Connecting transitions: Directly apply updates
• SCC transitions: Capture repetitions by using runtime bounds

10 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Analyzing Programs: Size Bounds

▶ Size bounds by closed forms [FroCoS ’23]
• Compute closed form for loop

• Over­approximate closed form to non­negative, weakly monotonic increasing
expression
• Substitute n by runtime bound

▶ Changed accumulated size bounds [TOPLAS ’16]

• Construct variable dependence graph
• Connecting transitions: Directly apply updates
• SCC transitions: Capture repetitions by using runtime bounds

10 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Analyzing Programs: Size Bounds

▶ Size bounds by closed forms [FroCoS ’23]
• Compute closed form for loop

• Over­approximate closed form to non­negative, weakly monotonic increasing
expression
• Substitute n by runtime bound

▶ Changed accumulated size bounds [TOPLAS ’16]

• Construct variable dependence graph
• Connecting transitions: Directly apply updates
• SCC transitions: Capture repetitions by using runtime bounds

while (x1 > 0) do[
x1
x2

]
←

[
x1 − 1
x2 + x21

]
end

▶ Closed form:
clnx2 = x2 + n · (16 + x1 + x21−x1 · n−n

2 +
n2

3 )

▶ Over­approximation:
x2 + n · (16 + x1 + x21+x1 · n+n

2 +
n2

3 )

▶ Size bound:
x2+x1 · (16+x1+x21+x1 ·x1+ x1

2 +
x1

2

3 )

10 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Analyzing Programs: Size Bounds

▶ Size bounds by closed forms [FroCoS ’23]
• Compute closed form for loop

• Over­approximate closed form to non­negative, weakly monotonic increasing
expression
• Substitute n by runtime bound

▶ Changed accumulated size bounds [TOPLAS ’16]

• Construct variable dependence graph
• Connecting transitions: Directly apply updates
• SCC transitions: Capture repetitions by using runtime bounds

while (x1 > 0) do[
x1
x2

]
←

[
x1 − 1
x2 + x21

]
end

▶ Closed form:
clnx2 = x2 + n · (16 + x1 + x21−x1 · n−n

2 +
n2

3 )

▶ Over­approximation:
x2 + n · (16 + x1 + x21+x1 · n+n

2 +
n2

3 )

▶ Size bound:
x2+x1 · (16+x1+x21+x1 ·x1+ x1

2 +
x1

2

3 )

10 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Analyzing Programs: Size Bounds

▶ Size bounds by closed forms [FroCoS ’23]
• Compute closed form for loop
• Over­approximate closed form to non­negative, weakly monotonic increasing
expression

• Substitute n by runtime bound
▶ Changed accumulated size bounds [TOPLAS ’16]

• Construct variable dependence graph
• Connecting transitions: Directly apply updates
• SCC transitions: Capture repetitions by using runtime bounds

while (x1 > 0) do[
x1
x2

]
←

[
x1 − 1
x2 + x21

]
end

▶ Closed form:
clnx2 = x2 + n · (16 + x1 + x21−x1 · n−n

2 +
n2

3 )

▶ Over­approximation:
x2 + n · (16 + x1 + x21+x1 · n+n

2 +
n2

3 )

▶ Size bound:
x2+x1 · (16+x1+x21+x1 ·x1+ x1

2 +
x1

2

3 )

10 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Analyzing Programs: Size Bounds

▶ Size bounds by closed forms [FroCoS ’23]
• Compute closed form for loop
• Over­approximate closed form to non­negative, weakly monotonic increasing
expression

• Substitute n by runtime bound
▶ Changed accumulated size bounds [TOPLAS ’16]

• Construct variable dependence graph
• Connecting transitions: Directly apply updates
• SCC transitions: Capture repetitions by using runtime bounds

while (x1 > 0) do[
x1
x2

]
←

[
x1 − 1
x2 + x21

]
end

▶ Closed form:
clnx2 = x2 + n · (16 + x1 + x21−x1 · n−n

2 +
n2

3 )

▶ Over­approximation:
x2 + n · (16 + x1 + x21+x1 · n+n

2 +
n2

3 )

▶ Size bound:
x2+x1 · (16+x1+x21+x1 ·x1+ x1

2 +
x1

2

3 )

10 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Analyzing Programs: Size Bounds

▶ Size bounds by closed forms [FroCoS ’23]
• Compute closed form for loop
• Over­approximate closed form to non­negative, weakly monotonic increasing
expression
• Substitute n by runtime bound

▶ Changed accumulated size bounds [TOPLAS ’16]

• Construct variable dependence graph
• Connecting transitions: Directly apply updates
• SCC transitions: Capture repetitions by using runtime bounds

while (x1 > 0) do[
x1
x2

]
←

[
x1 − 1
x2 + x21

]
end

▶ Closed form:
clnx2 = x2 + n · (16 + x1 + x21−x1 · n−n

2 +
n2

3 )

▶ Over­approximation:
x2 + n · (16 + x1 + x21+x1 · n+n

2 +
n2

3 )

▶ Size bound:
x2+x1 · (16+x1+x21+x1 ·x1+ x1

2 +
x1

2

3 )

10 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Analyzing Programs: Size Bounds

▶ Size bounds by closed forms [FroCoS ’23]
• Compute closed form for loop
• Over­approximate closed form to non­negative, weakly monotonic increasing
expression
• Substitute n by runtime bound

▶ Changed accumulated size bounds [TOPLAS ’16]

• Construct variable dependence graph
• Connecting transitions: Directly apply updates
• SCC transitions: Capture repetitions by using runtime bounds

while (x1 > 0) do[
x1
x2

]
←

[
x1 − 1
x2 + x21

]
end

▶ Closed form:
clnx2 = x2 + n · (16 + x1 + x21−x1 · n−n

2 +
n2

3 )

▶ Over­approximation:
x2 + n · (16 + x1 + x21+x1 · n+n

2 +
n2

3 )

▶ Size bound:
x2+x1 · (16+x1+x21+x1 ·x1+ x1

2 +
x1

2

3 )

10 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Analyzing Programs: Size Bounds

▶ Size bounds by closed forms [FroCoS ’23]
• Compute closed form for loop
• Over­approximate closed form to non­negative, weakly monotonic increasing
expression
• Substitute n by runtime bound

▶ Changed accumulated size bounds [TOPLAS ’16]

• Construct variable dependence graph
• Connecting transitions: Directly apply updates
• SCC transitions: Capture repetitions by using runtime bounds

10 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Analyzing Programs: Size Bounds

▶ Size bounds by closed forms [FroCoS ’23]
• Compute closed form for loop
• Over­approximate closed form to non­negative, weakly monotonic increasing
expression
• Substitute n by runtime bound

▶ Changed accumulated size bounds [TOPLAS ’16]
• Construct variable dependence graph

• Connecting transitions: Directly apply updates
• SCC transitions: Capture repetitions by using runtime bounds

10 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Analyzing Programs: Size Bounds

▶ Size bounds by closed forms [FroCoS ’23]
• Compute closed form for loop
• Over­approximate closed form to non­negative, weakly monotonic increasing
expression
• Substitute n by runtime bound

▶ Changed accumulated size bounds [TOPLAS ’16]
• Construct variable dependence graph

• Connecting transitions: Directly apply updates
• SCC transitions: Capture repetitions by using runtime bounds

…
t1, x1

…
t2, x2

t3, x3

…… …
t1, x1

…
t2, x2

t3, x3

……

10 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Analyzing Programs: Size Bounds

▶ Size bounds by closed forms [FroCoS ’23]
• Compute closed form for loop
• Over­approximate closed form to non­negative, weakly monotonic increasing
expression
• Substitute n by runtime bound

▶ Changed accumulated size bounds [TOPLAS ’16]
• Construct variable dependence graph
• Connecting transitions: Directly apply updates

• SCC transitions: Capture repetitions by using runtime bounds

…
t1, x1

…
t2, x2

t3, x3

…… …
t1, x1

…
t2, x2

t3, x3

……

10 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Analyzing Programs: Size Bounds

▶ Size bounds by closed forms [FroCoS ’23]
• Compute closed form for loop
• Over­approximate closed form to non­negative, weakly monotonic increasing
expression
• Substitute n by runtime bound

▶ Changed accumulated size bounds [TOPLAS ’16]
• Construct variable dependence graph
• Connecting transitions: Directly apply updates
• SCC transitions: Capture repetitions by using runtime bounds

…
t1, x1

…
t2, x2

t3, x3

…… …
t1, x1

…
t2, x2

t3, x3

……

10 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Overview

▶ KoAT uses
• a modular approach to compute time bounds combining

– a procedure to handle twn­loops
[IJCAR ’22]

– MΦRFs [RH ’22]

• a modular approach to compute size bounds combining

– a procedure using closed­forms
[FroCoS ’23]

– changed accumulated size bounds
[TOPLAS ’16]

• local control flow­refinement by iRankFinder [RH ’22].

11 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Integrating Control­Flow Refinement

▶ Problem: complex, nested loops

▶ Loop consists of two phases:

1. then­case is repeated until y ≤ 0
2. else­case is repeated until x ≤ 0

⇒ No run, where second phase is
executed before first phase

Control­Flow Refinement by Partial Evalua­
tion (CFR) [Doménech et al. ’19]
▶ sort out certain program paths
⇒ integrate CFR into our modular approach
▶ CFR modular for SCCs with “problematic”
transitions on­demand [RH ’22]

while (x > 0) do
if (y > 0) then
y← y− x

else
x← x− 1

end

⇝

while (x > 0 ∧ y > 0) do
y← y− x

end
while (x > 0 ∧ y ≤ 0) do
x← x− 1

end

12 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Integrating Control­Flow Refinement

▶ Problem: complex, nested loops
▶ Loop consists of two phases:

1. then­case is repeated until y ≤ 0
2. else­case is repeated until x ≤ 0

⇒ No run, where second phase is
executed before first phase

Control­Flow Refinement by Partial Evalua­
tion (CFR) [Doménech et al. ’19]
▶ sort out certain program paths
⇒ integrate CFR into our modular approach
▶ CFR modular for SCCs with “problematic”
transitions on­demand [RH ’22]

while (x > 0) do
if (y > 0) then
y← y− x

else
x← x− 1

end

⇝

while (x > 0 ∧ y > 0) do
y← y− x

end
while (x > 0 ∧ y ≤ 0) do
x← x− 1

end

12 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Integrating Control­Flow Refinement

▶ Problem: complex, nested loops
▶ Loop consists of two phases:
1. then­case is repeated until y ≤ 0

2. else­case is repeated until x ≤ 0

⇒ No run, where second phase is
executed before first phase

Control­Flow Refinement by Partial Evalua­
tion (CFR) [Doménech et al. ’19]
▶ sort out certain program paths
⇒ integrate CFR into our modular approach
▶ CFR modular for SCCs with “problematic”
transitions on­demand [RH ’22]

while (x > 0) do
if (y > 0) then
y← y− x

else
x← x− 1

end

⇝

while (x > 0 ∧ y > 0) do
y← y− x

end
while (x > 0 ∧ y ≤ 0) do
x← x− 1

end

12 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Integrating Control­Flow Refinement

▶ Problem: complex, nested loops
▶ Loop consists of two phases:
1. then­case is repeated until y ≤ 0
2. else­case is repeated until x ≤ 0

⇒ No run, where second phase is
executed before first phase

Control­Flow Refinement by Partial Evalua­
tion (CFR) [Doménech et al. ’19]
▶ sort out certain program paths
⇒ integrate CFR into our modular approach
▶ CFR modular for SCCs with “problematic”
transitions on­demand [RH ’22]

while (x > 0) do
if (y > 0) then
y← y− x

else
x← x− 1

end

⇝

while (x > 0 ∧ y > 0) do
y← y− x

end
while (x > 0 ∧ y ≤ 0) do
x← x− 1

end

12 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Integrating Control­Flow Refinement

▶ Problem: complex, nested loops
▶ Loop consists of two phases:
1. then­case is repeated until y ≤ 0
2. else­case is repeated until x ≤ 0

⇒ No run, where second phase is
executed before first phase

Control­Flow Refinement by Partial Evalua­
tion (CFR) [Doménech et al. ’19]
▶ sort out certain program paths
⇒ integrate CFR into our modular approach
▶ CFR modular for SCCs with “problematic”
transitions on­demand [RH ’22]

while (x > 0) do
if (y > 0) then
y← y− x

else
x← x− 1

end

⇝

while (x > 0 ∧ y > 0) do
y← y− x

end
while (x > 0 ∧ y ≤ 0) do
x← x− 1

end

12 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Integrating Control­Flow Refinement

▶ Problem: complex, nested loops
▶ Loop consists of two phases:
1. then­case is repeated until y ≤ 0
2. else­case is repeated until x ≤ 0

⇒ No run, where second phase is
executed before first phase

Control­Flow Refinement by Partial Evalua­
tion (CFR) [Doménech et al. ’19]

▶ sort out certain program paths
⇒ integrate CFR into our modular approach
▶ CFR modular for SCCs with “problematic”
transitions on­demand [RH ’22]

while (x > 0) do
if (y > 0) then
y← y− x

else
x← x− 1

end

⇝

while (x > 0 ∧ y > 0) do
y← y− x

end
while (x > 0 ∧ y ≤ 0) do
x← x− 1

end

12 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Integrating Control­Flow Refinement

▶ Problem: complex, nested loops
▶ Loop consists of two phases:
1. then­case is repeated until y ≤ 0
2. else­case is repeated until x ≤ 0

⇒ No run, where second phase is
executed before first phase

Control­Flow Refinement by Partial Evalua­
tion (CFR) [Doménech et al. ’19]
▶ sort out certain program paths

⇒ integrate CFR into our modular approach
▶ CFR modular for SCCs with “problematic”
transitions on­demand [RH ’22]

while (x > 0) do
if (y > 0) then
y← y− x

else
x← x− 1

end

⇝

while (x > 0 ∧ y > 0) do
y← y− x

end
while (x > 0 ∧ y ≤ 0) do
x← x− 1

end

12 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Integrating Control­Flow Refinement

▶ Problem: complex, nested loops
▶ Loop consists of two phases:
1. then­case is repeated until y ≤ 0
2. else­case is repeated until x ≤ 0

⇒ No run, where second phase is
executed before first phase

Control­Flow Refinement by Partial Evalua­
tion (CFR) [Doménech et al. ’19]
▶ sort out certain program paths

⇒ integrate CFR into our modular approach
▶ CFR modular for SCCs with “problematic”
transitions on­demand [RH ’22]

while (x > 0) do
if (y > 0) then
y← y− x

else
x← x− 1

end

⇝

while (x > 0 ∧ y > 0) do
y← y− x

end
while (x > 0 ∧ y ≤ 0) do
x← x− 1

end

12 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Integrating Control­Flow Refinement

▶ Problem: complex, nested loops
▶ Loop consists of two phases:
1. then­case is repeated until y ≤ 0
2. else­case is repeated until x ≤ 0

⇒ No run, where second phase is
executed before first phase

Control­Flow Refinement by Partial Evalua­
tion (CFR) [Doménech et al. ’19]
▶ sort out certain program paths
⇒ integrate CFR into our modular approach

▶ CFR modular for SCCs with “problematic”
transitions on­demand [RH ’22]

while (x > 0) do
if (y > 0) then
y← y− x

else
x← x− 1

end

⇝

while (x > 0 ∧ y > 0) do
y← y− x

end
while (x > 0 ∧ y ≤ 0) do
x← x− 1

end

12 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Integrating Control­Flow Refinement

▶ Problem: complex, nested loops
▶ Loop consists of two phases:
1. then­case is repeated until y ≤ 0
2. else­case is repeated until x ≤ 0

⇒ No run, where second phase is
executed before first phase

Control­Flow Refinement by Partial Evalua­
tion (CFR) [Doménech et al. ’19]
▶ sort out certain program paths
⇒ integrate CFR into our modular approach
▶ CFR modular for SCCs with “problematic”
transitions on­demand [RH ’22]

while (x > 0) do
if (y > 0) then
y← y− x

else
x← x− 1

end

⇝

while (x > 0 ∧ y > 0) do
y← y− x

end
while (x > 0 ∧ y ≤ 0) do
x← x− 1

end

12 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2



Live­Demo

(GOAL COMPLEXITY)
(STARTTERM (FUNCTIONSYMBOLS l0))
(VAR A B C D E)
(RULES

l0(A,B,C,D,E) -> l1(A,B,C,D,E) :|: C > 0
l1(A,B,C,D,E) -> l2(D,E^2,C,D,E) :|: C > 0
l2(A,B,C,D,E) -> l2(2*A,3*B,C,D,E) :|: A^2 < B && A > 0
l2(A,B,C,D,E) -> l1(A,B,C - 1,D,E)

)

https://koat.verify.rwth-aachen.de

13 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://koat.verify.rwth-aachen.de


Conclusion

▶ KoAT uses

• a modular approach to compute time bounds combining

– a procedure to handle twn­loops
[IJCAR ’22]

– MΦRFs [RH ’22]

• a modular approach to compute size bounds combining

– a procedure using closed­forms
[FroCoS ’23]

– changed accumulated size bounds
[TOPLAS ’16]

• local control flow­refinement by iRankFinder [RH ’22].

https://koat.verify.rwth-aachen.de

Thank You!

14 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://koat.verify.rwth-aachen.de


Conclusion

▶ KoAT uses
• a modular approach to compute time bounds combining

– a procedure to handle twn­loops
[IJCAR ’22]

– MΦRFs [RH ’22]

• a modular approach to compute size bounds combining

– a procedure using closed­forms
[FroCoS ’23]

– changed accumulated size bounds
[TOPLAS ’16]

• local control flow­refinement by iRankFinder [RH ’22].

https://koat.verify.rwth-aachen.de

Thank You!

14 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://koat.verify.rwth-aachen.de


Conclusion

▶ KoAT uses
• a modular approach to compute time bounds combining

– a procedure to handle twn­loops
[IJCAR ’22]

– MΦRFs [RH ’22]

• a modular approach to compute size bounds combining

– a procedure using closed­forms
[FroCoS ’23]

– changed accumulated size bounds
[TOPLAS ’16]

• local control flow­refinement by iRankFinder [RH ’22].

https://koat.verify.rwth-aachen.de

Thank You!

14 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://koat.verify.rwth-aachen.de


Conclusion

▶ KoAT uses
• a modular approach to compute time bounds combining

– a procedure to handle twn­loops
[IJCAR ’22]

– MΦRFs [RH ’22]

• a modular approach to compute size bounds combining

– a procedure using closed­forms
[FroCoS ’23]

– changed accumulated size bounds
[TOPLAS ’16]

• local control flow­refinement by iRankFinder [RH ’22].

https://koat.verify.rwth-aachen.de

Thank You!

14 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://koat.verify.rwth-aachen.de


Conclusion

▶ KoAT uses
• a modular approach to compute time bounds combining

– a procedure to handle twn­loops
[IJCAR ’22]

– MΦRFs [RH ’22]

• a modular approach to compute size bounds combining

– a procedure using closed­forms
[FroCoS ’23]

– changed accumulated size bounds
[TOPLAS ’16]

• local control flow­refinement by iRankFinder [RH ’22].

https://koat.verify.rwth-aachen.de

Thank You!

14 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://koat.verify.rwth-aachen.de


Conclusion

▶ KoAT uses
• a modular approach to compute time bounds combining

– a procedure to handle twn­loops
[IJCAR ’22]

– MΦRFs [RH ’22]

• a modular approach to compute size bounds combining

– a procedure using closed­forms
[FroCoS ’23]

– changed accumulated size bounds
[TOPLAS ’16]

• local control flow­refinement by iRankFinder [RH ’22].

https://koat.verify.rwth-aachen.de

Thank You!

14 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://koat.verify.rwth-aachen.de


Conclusion

▶ KoAT uses
• a modular approach to compute time bounds combining

– a procedure to handle twn­loops
[IJCAR ’22]

– MΦRFs [RH ’22]

• a modular approach to compute size bounds combining

– a procedure using closed­forms
[FroCoS ’23]

– changed accumulated size bounds
[TOPLAS ’16]

• local control flow­refinement by iRankFinder [RH ’22].

https://koat.verify.rwth-aachen.de

Thank You!

14 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://koat.verify.rwth-aachen.de


Conclusion

▶ KoAT uses
• a modular approach to compute time bounds combining

– a procedure to handle twn­loops
[IJCAR ’22]

– MΦRFs [RH ’22]

• a modular approach to compute size bounds combining

– a procedure using closed­forms
[FroCoS ’23]

– changed accumulated size bounds
[TOPLAS ’16]

• local control flow­refinement by iRankFinder [RH ’22].

https://koat.verify.rwth-aachen.de

Thank You!

14 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://koat.verify.rwth-aachen.de


Conclusion

▶ KoAT uses
• a modular approach to compute time bounds combining

– a procedure to handle twn­loops
[IJCAR ’22]

– MΦRFs [RH ’22]

• a modular approach to compute size bounds combining

– a procedure using closed­forms
[FroCoS ’23]

– changed accumulated size bounds
[TOPLAS ’16]

• local control flow­refinement by iRankFinder [RH ’22].

https://koat.verify.rwth-aachen.de

Thank You!

14 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://koat.verify.rwth-aachen.de


Conclusion

▶ KoAT uses
• a modular approach to compute time bounds combining

– a procedure to handle twn­loops
[IJCAR ’22]

– MΦRFs [RH ’22]

• a modular approach to compute size bounds combining

– a procedure using closed­forms
[FroCoS ’23]

– changed accumulated size bounds
[TOPLAS ’16]

• local control flow­refinement by iRankFinder [RH ’22].

https://koat.verify.rwth-aachen.de

Thank You!

14 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://koat.verify.rwth-aachen.de


Conclusion

▶ KoAT uses
• a modular approach to compute time bounds combining

– a procedure to handle twn­loops
[IJCAR ’22]

– MΦRFs [RH ’22]

• a modular approach to compute size bounds combining

– a procedure using closed­forms
[FroCoS ’23]

– changed accumulated size bounds
[TOPLAS ’16]

• local control flow­refinement by iRankFinder [RH ’22].

https://koat.verify.rwth-aachen.de

Thank You!

14 of 14 WST 2023
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://koat.verify.rwth-aachen.de

