
Automatic Complexity Analysis of Integer Programs via
Triangular Weakly NonLinear Loops
11th International Joint Conference on Automated Reasoning

Nils Lommen, Eleanore Meyer, and Jürgen Giesl

1 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Motivation

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x21 < x2 ∧ x1 > 0) dox1x2
x3

←
2 · x1 + x23

3 · x2
x3

end

▶ Does this loop terminate?
▶ How often do we execute the
loop?

• Linear ranking functions fail.
• Existing tools usually fail with
nonlinear arithmetic

• Can compute nonlinear runtime
bounds for twnloops.

▶ Combine [TOPLAS ’16] and [SAS ’20; LPAR ’20] in automatic complexity
analysis tool KoAT

▶ Approach is complete for all terminating twnloops

2 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Motivation

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x21 < x2 ∧ x1 > 0) dox1x2
x3

←
2 · x1 + x23

3 · x2
x3

end

▶ Does this loop terminate?

▶ How often do we execute the
loop?

• Linear ranking functions fail.
• Existing tools usually fail with
nonlinear arithmetic

• Can compute nonlinear runtime
bounds for twnloops.

▶ Combine [TOPLAS ’16] and [SAS ’20; LPAR ’20] in automatic complexity
analysis tool KoAT

▶ Approach is complete for all terminating twnloops

2 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Motivation

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x21 < x2 ∧ x1 > 0) dox1x2
x3

←
2 · x1 + x23

3 · x2
x3

end

▶ Does this loop terminate?
▶ How often do we execute the
loop?

• Linear ranking functions fail.
• Existing tools usually fail with
nonlinear arithmetic

• Can compute nonlinear runtime
bounds for twnloops.

▶ Combine [TOPLAS ’16] and [SAS ’20; LPAR ’20] in automatic complexity
analysis tool KoAT

▶ Approach is complete for all terminating twnloops

2 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Motivation

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x21 < x2 ∧ x1 > 0) dox1x2
x3

←
2 · x1 + x23

3 · x2
x3

end

▶ Does this loop terminate?
▶ How often do we execute the
loop?
• Linear ranking functions fail.

• Existing tools usually fail with
nonlinear arithmetic

• Can compute nonlinear runtime
bounds for twnloops.

▶ Combine [TOPLAS ’16] and [SAS ’20; LPAR ’20] in automatic complexity
analysis tool KoAT

▶ Approach is complete for all terminating twnloops

2 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Motivation

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x21 < x2 ∧ x1 > 0) dox1x2
x3

←
2 · x1 + x23

3 · x2
x3

end

▶ Does this loop terminate?
▶ How often do we execute the
loop?
• Linear ranking functions fail.
• Existing tools usually fail with
nonlinear arithmetic

• Can compute nonlinear runtime
bounds for twnloops.

▶ Combine [TOPLAS ’16] and [SAS ’20; LPAR ’20] in automatic complexity
analysis tool KoAT

▶ Approach is complete for all terminating twnloops

2 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Motivation

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x21 < x2 ∧ x1 > 0) dox1x2
x3

←
2 · x1 + x23

3 · x2
x3

end

▶ Does this loop terminate?
▶ How often do we execute the
loop?
• Linear ranking functions fail.
• Existing tools usually fail with
nonlinear arithmetic

• Can compute nonlinear runtime
bounds for twnloops.

▶ Combine [TOPLAS ’16] and [SAS ’20; LPAR ’20] in automatic complexity
analysis tool KoAT

▶ Approach is complete for all terminating twnloops

2 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Motivation

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x21 < x2 ∧ x1 > 0) dox1x2
x3

←
2 · x1 + x23

3 · x2
x3

end

▶ Does this loop terminate?
▶ How often do we execute the
loop?
• Linear ranking functions fail.
• Existing tools usually fail with
nonlinear arithmetic

• Can compute nonlinear runtime
bounds for twnloops.

▶ Combine [TOPLAS ’16] and [SAS ’20; LPAR ’20] in automatic complexity
analysis tool KoAT

▶ Approach is complete for all terminating twnloops

2 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Motivation

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x21 < x2 ∧ x1 > 0) dox1x2
x3

←
2 · x1 + x23

3 · x2
x3

end

▶ Does this loop terminate?
▶ How often do we execute the
loop?
• Linear ranking functions fail.
• Existing tools usually fail with
nonlinear arithmetic

• Can compute nonlinear runtime
bounds for twnloops.

▶ Combine [TOPLAS ’16] and [SAS ’20; LPAR ’20] in automatic complexity
analysis tool KoAT

▶ Approach is complete for all terminating twnloops

2 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Analyze Program

Analyze

Subprogram

TWN MΦRF

Closed Forms

Simplification

Termination

Stabilization Threshold

Local Runtime Bound

3 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Analyze Program

Analyze

Subprogram

TWN

MΦRF

Closed Forms

Simplification

Termination

Stabilization Threshold

Local Runtime Bound

3 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Analyze Program

Analyze

Subprogram

TWN

MΦRF

Closed Forms

Simplification

Termination

Stabilization Threshold

Local Runtime Bound

3 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Analyze Program

Analyze

Subprogram

TWN

MΦRF

Closed Forms

Simplification

Termination

Stabilization Threshold

Local Runtime Bound

3 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Analyze Program

Analyze

Subprogram

TWN

MΦRF

Closed Forms

Simplification

Termination

Stabilization Threshold

Local Runtime Bound

3 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Analyze Program

Analyze

Subprogram

TWN

MΦRF

Closed Forms

Simplification

Termination

Stabilization Threshold

Local Runtime Bound

3 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Analyze Program

Analyze

Subprogram

TWN

MΦRF

Closed Forms

Simplification

Termination

Stabilization Threshold

Local Runtime Bound

3 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

TWNLoops

while (τ) dox1
. . .
xd

←
c1 · x1 + p1

. . .
cd · xd + pd

end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ c1, . . . , cd ∈ Z
▶ pi ∈ Z[xi+1, . . . , xd] nonlinear

▶ Variable value depends at most linearly on its previous value.

• Prevent superexponential growth: x← x2 (so the value is 2(2
i) · e)

▶ Polynomial dependencies only of variables with higher index

• No cyclic dependencies: x1 ← x2 and x2 ← x1

4 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

TWNLoops

while (τ) dox1
. . .
xd

←
c1 · x1 + p1

. . .
cd · xd + pd

end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ c1, . . . , cd ∈ Z

▶ pi ∈ Z[xi+1, . . . , xd] nonlinear

▶ Variable value depends at most linearly on its previous value.

• Prevent superexponential growth: x← x2 (so the value is 2(2
i) · e)

▶ Polynomial dependencies only of variables with higher index

• No cyclic dependencies: x1 ← x2 and x2 ← x1

4 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

TWNLoops

while (τ) dox1
. . .
xd

←
c1 · x1 + p1

. . .
cd · xd + pd

end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ c1, . . . , cd ∈ Z

▶ pi ∈ Z[xi+1, . . . , xd] nonlinear

▶ Variable value depends at most linearly on its previous value.

• Prevent superexponential growth: x← x2 (so the value is 2(2
i) · e)

▶ Polynomial dependencies only of variables with higher index

• No cyclic dependencies: x1 ← x2 and x2 ← x1

4 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

TWNLoops

while (τ) dox1
. . .
xd

←
c1 · x1 + p1

. . .
cd · xd + pd

end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ c1, . . . , cd ∈ Z

▶ pi ∈ Z[xi+1, . . . , xd] nonlinear

▶ Variable value depends at most linearly on its previous value.
• Prevent superexponential growth: x← x2 (so the value is 2(2

i) · e)

▶ Polynomial dependencies only of variables with higher index

• No cyclic dependencies: x1 ← x2 and x2 ← x1

4 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

TWNLoops

while (τ) dox1
. . .
xd

←
c1 · x1 + p1

. . .
cd · xd + pd

end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ c1, . . . , cd ∈ Z
▶ pi ∈ Z[xi+1, . . . , xd] nonlinear

▶ Variable value depends at most linearly on its previous value.
• Prevent superexponential growth: x← x2 (so the value is 2(2

i) · e)

▶ Polynomial dependencies only of variables with higher index

• No cyclic dependencies: x1 ← x2 and x2 ← x1

4 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

TWNLoops

while (τ) dox1
. . .
xd

←
c1 · x1 + p1

. . .
cd · xd + pd

end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ c1, . . . , cd ∈ Z
▶ pi ∈ Z[xi+1, . . . , xd] nonlinear

▶ Variable value depends at most linearly on its previous value.
• Prevent superexponential growth: x← x2 (so the value is 2(2

i) · e)
▶ Polynomial dependencies only of variables with higher index

• No cyclic dependencies: x1 ← x2 and x2 ← x1

4 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

TWNLoops

while (τ) dox1
. . .
xd

←
c1 · x1 + p1

. . .
cd · xd + pd

end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ c1, . . . , cd ∈ Z
▶ pi ∈ Z[xi+1, . . . , xd] nonlinear

▶ Variable value depends at most linearly on its previous value.
• Prevent superexponential growth: x← x2 (so the value is 2(2

i) · e)
▶ Polynomial dependencies only of variables with higher index

• No cyclic dependencies: x1 ← x2 and x2 ← x1

4 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

TWNLoops

while (x21 < x2 ∧ x1 > 0) dox1x2
x3

←
2 · x1 + x23

3 · x2
x3

end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ c1, . . . , cd ∈ Z
▶ pi ∈ Z[xi+1, . . . , xd] nonlinear

▶ Variable value depends at most linearly on its previous value.
• Prevent superexponential growth: x← x2 (so the value is 2(2

i) · e)
▶ Polynomial dependencies only of variables with higher index

• No cyclic dependencies: x1 ← x2 and x2 ← x1

4 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

TWNLoops

while (x21 < x2 ∧ x1 > 0) dox1x2
x3

←
2 · x13 · x2
1 · x3

+
0 0 1
0 0 0
0 0 0

x1x2
x23

end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ c1, . . . , cd ∈ Z
▶ pi ∈ Z[xi+1, . . . , xd] nonlinear

▶ Variable value depends at most linearly on its previous value.
• Prevent superexponential growth: x← x2 (so the value is 2(2

i) · e)
▶ Polynomial dependencies only of variables with higher index

• No cyclic dependencies: x1 ← x2 and x2 ← x1

4 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Analyze Program

Sizes

Analyze

Subprogram

TWN

MΦRF

Closed Forms

Simplification

Termination

Stabilization Threshold

Local Runtime Bound

5 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Closed Forms & Simplification

Goal: Infer closed forms

and remove nonlinear parts to reduce degree

while (x21 < x2 ∧ x1 > 0) dox1x2
x3

←
2 · x1 + x23

3 · x2
x3

end

▶ Value of always nonnegative

• Removing x23 increases runtime

▶ Eliminated nonlinear occurrence of x3
in closed forms

▶ Novel approach infers tighter bounds
than [LPAR ’20]

▶ Closed forms after i iterations w.r.t. initial values e1, e2 and e3 :

•
• Value of x2: 3i · e2

▶ KoAT automatically infers closed forms [CAV ’19] and applies simplification

6 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Closed Forms & Simplification

Goal: Infer closed forms

and remove nonlinear parts to reduce degree

while (x21 < x2 ∧ x1 > 0) dox1x2
x3

←
2 · x1 + x23

3 · x2
x3

end

▶ Value of always nonnegative

• Removing x23 increases runtime

▶ Eliminated nonlinear occurrence of x3
in closed forms

▶ Novel approach infers tighter bounds
than [LPAR ’20]

▶ Closed forms after i iterations w.r.t. initial values e1, e2 and e3 :

•
• Value of x2: 3i · e2

▶ KoAT automatically infers closed forms [CAV ’19] and applies simplification

6 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Closed Forms & Simplification

Goal: Infer closed forms

and remove nonlinear parts to reduce degree

while (x21 < x2 ∧ x1 > 0) dox1x2
x3

←
2 · x1 + x23

3 · x2
x3

end

▶ Value of always nonnegative

• Removing x23 increases runtime

▶ Eliminated nonlinear occurrence of x3
in closed forms

▶ Novel approach infers tighter bounds
than [LPAR ’20]

▶ Closed forms after i iterations w.r.t. initial values e1, e2 and e3 :
• Value of x1: 2i · (e1 + e23)− e23

• Value of x2: 3i · e2
▶ KoAT automatically infers closed forms [CAV ’19] and applies simplification

6 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Closed Forms & Simplification

Goal: Infer closed forms

and remove nonlinear parts to reduce degree

while (x21 < x2 ∧ x1 > 0) dox1x2
x3

←
2 · x1 + x23

3 · x2
x3

end

▶ Value of always nonnegative

• Removing x23 increases runtime

▶ Eliminated nonlinear occurrence of x3
in closed forms

▶ Novel approach infers tighter bounds
than [LPAR ’20]

▶ Closed forms after i iterations w.r.t. initial values e1, e2 and e3 :
• Value of x21: (2i · (e1 + e23)− e23)

2

• Value of x2: 3i · e2
▶ KoAT automatically infers closed forms [CAV ’19] and applies simplification

6 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Closed Forms & Simplification

Goal: Infer closed forms and remove nonlinear parts to reduce degree

while (x21 < x2 ∧ x1 > 0) dox1x2
x3

←
2 · x1 + x23

3 · x2
x3

end

▶ Value of always nonnegative

• Removing x23 increases runtime

▶ Eliminated nonlinear occurrence of x3
in closed forms

▶ Novel approach infers tighter bounds
than [LPAR ’20]

▶ Closed forms after i iterations w.r.t. initial values e1, e2 and e3 :
• Value of x21: (2i · (e1 + e23)− e23)

2

• Value of x2: 3i · e2
▶ KoAT automatically infers closed forms [CAV ’19] and applies simplification

6 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Closed Forms & Simplification

Goal: Infer closed forms and remove nonlinear parts to reduce degree

while (x21 < x2 ∧ x1 > 0) dox1x2
x3

←
2 · x1 + x23

3 · x2
x3

end

▶ Value of x23 always nonnegative

• Removing x23 increases runtime
▶ Eliminated nonlinear occurrence of x3
in closed forms

▶ Novel approach infers tighter bounds
than [LPAR ’20]

▶ Closed forms after i iterations w.r.t. initial values e1, e2 and e3 :
• Value of x21: (2i · (e1 + e23)− e23)

2

• Value of x2: 3i · e2
▶ KoAT automatically infers closed forms [CAV ’19] and applies simplification

6 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Closed Forms & Simplification

Goal: Infer closed forms and remove nonlinear parts to reduce degree

while (x21 < x2 ∧ x1 > 0) dox1x2
x3

←
2 · x1 + x23

3 · x2
x3

end

▶ Value of x23 always nonnegative
• Removing x23 increases runtime

▶ Eliminated nonlinear occurrence of x3
in closed forms

▶ Novel approach infers tighter bounds
than [LPAR ’20]

▶ Closed forms after i iterations w.r.t. initial values e1, e2 and e3 :
• Value of x21: (2i · (e1 + e23)− e23)

2

• Value of x2: 3i · e2
▶ KoAT automatically infers closed forms [CAV ’19] and applies simplification

6 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Closed Forms & Simplification

Goal: Infer closed forms and remove nonlinear parts to reduce degree

while (x21 < x2 ∧ x1 > 0) dox1x2
x3

←
2 · x13 · x2

x3

end

▶ Value of x23 always nonnegative
• Removing x23 increases runtime

▶ Eliminated nonlinear occurrence of x3
in closed forms

▶ Novel approach infers tighter bounds
than [LPAR ’20]

▶ Closed forms after i iterations w.r.t. initial values e1, e2 and e3 :
• Value of x21: (2i · (e1 + e23)− e23)

2

• Value of x2: 3i · e2
▶ KoAT automatically infers closed forms [CAV ’19] and applies simplification

6 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Closed Forms & Simplification

Goal: Infer closed forms and remove nonlinear parts to reduce degree

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

▶ Value of x23 always nonnegative
• Removing x23 increases runtime

▶ Eliminated nonlinear occurrence of x3
in closed forms

▶ Novel approach infers tighter bounds
than [LPAR ’20]

▶ Closed forms after i iterations w.r.t. initial values e1, e2 and e3 :
• Value of x21: (2i · (e1 + e23)− e23)

2

• Value of x2: 3i · e2
▶ KoAT automatically infers closed forms [CAV ’19] and applies simplification

6 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Closed Forms & Simplification

Goal: Infer closed forms and remove nonlinear parts to reduce degree

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

▶ Value of x23 always nonnegative
• Removing x23 increases runtime

▶ Eliminated nonlinear occurrence of x3
in closed forms

▶ Novel approach infers tighter bounds
than [LPAR ’20]

▶ Closed forms after i iterations w.r.t. initial values e1 and e2:
• Value of x1: 2i · e1

• Value of x2: 3i · e2
▶ KoAT automatically infers closed forms [CAV ’19] and applies simplification

6 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Closed Forms & Simplification

Goal: Infer closed forms and remove nonlinear parts to reduce degree

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

▶ Value of x23 always nonnegative
• Removing x23 increases runtime

▶ Eliminated nonlinear occurrence of x3
in closed forms

▶ Novel approach infers tighter bounds
than [LPAR ’20]

▶ Closed forms after i iterations w.r.t. initial values e1 and e2:
• Value of x21: (2i · e1)2 = 4i · e21

• Value of x2: 3i · e2
▶ KoAT automatically infers closed forms [CAV ’19] and applies simplification

6 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Closed Forms & Simplification

Goal: Infer closed forms and remove nonlinear parts to reduce degree

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

▶ Value of x23 always nonnegative
• Removing x23 increases runtime

▶ Eliminated nonlinear occurrence of x3
in closed forms

▶ Novel approach infers tighter bounds
than [LPAR ’20]

▶ Closed forms after i iterations w.r.t. initial values e1 and e2:
• Value of x21: (2i · e1)2 = 4i · e21
• Value of x2: 3i · e2

▶ KoAT automatically infers closed forms [CAV ’19] and applies simplification

6 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Closed Forms & Simplification

Goal: Infer closed forms and remove nonlinear parts to reduce degree

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

▶ Value of x23 always nonnegative
• Removing x23 increases runtime

▶ Eliminated nonlinear occurrence of x3
in closed forms

▶ Novel approach infers tighter bounds
than [LPAR ’20]

▶ Closed forms after i iterations w.r.t. initial values e1 and e2:
• Value of x21: (2i · e1)2 = 4i · e21
• Value of x2: 3i · e2

▶ KoAT automatically infers closed forms [CAV ’19] and applies simplification

6 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Closed Forms & Simplification

Goal: Infer closed forms and remove nonlinear parts to reduce degree

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

▶ Value of x23 always nonnegative
• Removing x23 increases runtime

▶ Eliminated nonlinear occurrence of x3
in closed forms

▶ Novel approach infers tighter bounds
than [LPAR ’20]

▶ Closed forms after i iterations w.r.t. initial values e1 and e2:
• Value of x21: (2i · e1)2 = 4i · e21
• Value of x2: 3i · e2

▶ KoAT automatically infers closed forms [CAV ’19] and applies simplification

6 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Closed Forms & Simplification

Goal: Infer closed forms and remove nonlinear parts to reduce degree

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

▶ Value of x23 always nonnegative
• Removing x23 increases runtime

▶ Eliminated nonlinear occurrence of x3
in closed forms

▶ Novel approach infers tighter bounds
than [LPAR ’20]

▶ Closed forms after i iterations w.r.t. initial values e1 and e2:
• Value of x21: (2i · e1)2 = 4i · e21
• Value of x2: 3i · e2

▶ KoAT automatically infers closed forms [CAV ’19] and applies simplification

6 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Analyze Program

Sizes

Analyze

Subprogram

TWN

MΦRF

Closed Forms

Simplification

Termination

Stabilization Threshold

Local Runtime Bound

7 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Termination of TWNLoops

Does the loop terminate?

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

▶ Yes!

▶ Value of x21 eventually outgrows
value of x2

▶ At some point we always have

4i · e21 ≥ 3i · e2.

▶ Reduce Termination to an existential formula over Z [SAS ’20]

• linear arithmetic: co-NPcomplete
• nonlinear arithmetic: nontermination is semidecidable

8 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Termination of TWNLoops

Does the loop terminate?

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

▶ Yes!
▶ Value of x21 eventually outgrows
value of x2

▶ At some point we always have

4i · e21 ≥ 3i · e2.

▶ Reduce Termination to an existential formula over Z [SAS ’20]

• linear arithmetic: co-NPcomplete
• nonlinear arithmetic: nontermination is semidecidable

8 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Termination of TWNLoops

Does the loop terminate?

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

▶ Yes!
▶ Value of x21 eventually outgrows
value of x2

▶ At some point we always have

4i · e21 ≥ 3i · e2.

▶ Reduce Termination to an existential formula over Z [SAS ’20]

• linear arithmetic: co-NPcomplete
• nonlinear arithmetic: nontermination is semidecidable

8 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Termination of TWNLoops

Does the loop terminate?

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

▶ Yes!
▶ Value of x21 eventually outgrows
value of x2

▶ At some point we always have

4i · e21 ≥ 3i · e2.

▶ Reduce Termination to an existential formula over Z [SAS ’20]

• linear arithmetic: co-NPcomplete
• nonlinear arithmetic: nontermination is semidecidable

8 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Termination of TWNLoops

Does the loop terminate?

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

▶ Yes!
▶ Value of x21 eventually outgrows
value of x2

▶ At some point we always have

4i · e21 ≥ 3i · e2.

▶ Reduce Termination to an existential formula over Z [SAS ’20]
• linear arithmetic: co-NPcomplete

• nonlinear arithmetic: nontermination is semidecidable

8 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Termination of TWNLoops

Does the loop terminate?

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

▶ Yes!
▶ Value of x21 eventually outgrows
value of x2

▶ At some point we always have

4i · e21 ≥ 3i · e2.

▶ Reduce Termination to an existential formula over Z [SAS ’20]
• linear arithmetic: co-NPcomplete
• nonlinear arithmetic: nontermination is semidecidable

8 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Analyze Program

Sizes

Analyze

Subprogram

TWN

MΦRF

Closed Forms

Simplification

Termination

Stabilization Threshold

Local Runtime Bound

9 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Runtime Complexity of TWNLoops

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

Closed forms w.r.t. initial values e1 and e2:

▶ Value of x21: (2i · e1)2 = 4i · e21
▶ Value of x2: 3i · e2

▶ Insert closed forms into guard x21 < x2:

▶ When does the sign of 4i · e21 − 3i · e2 only depend on e21 ?
▶ When do we have 4i > −3i · e2 ?
▶ At this point, the loop terminates or never will.
▶ Bound on stabilization threshold can be computed automatically
▶ Improve [LPAR ’20] by considering variables individually

10 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Runtime Complexity of TWNLoops

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

Closed forms w.r.t. initial values e1 and e2:

▶ Value of x21: (2i · e1)2 = 4i · e21
▶ Value of x2: 3i · e2

▶ Insert closed forms into guard x21 < x2:

▶ When does the sign of 4i · e21 − 3i · e2 only depend on e21 ?
▶ When do we have 4i > −3i · e2 ?
▶ At this point, the loop terminates or never will.
▶ Bound on stabilization threshold can be computed automatically
▶ Improve [LPAR ’20] by considering variables individually

10 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Runtime Complexity of TWNLoops

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

Closed forms w.r.t. initial values e1 and e2:

▶ Value of x21: (2i · e1)2 = 4i · e21
▶ Value of x2: 3i · e2

▶ Insert closed forms into guard x21 < x2:
4i · e21 < 3i · e2

▶ When does the sign of 4i · e21 − 3i · e2 only depend on e21 ?
▶ When do we have 4i > −3i · e2 ?
▶ At this point, the loop terminates or never will.
▶ Bound on stabilization threshold can be computed automatically
▶ Improve [LPAR ’20] by considering variables individually

10 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Runtime Complexity of TWNLoops

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

Closed forms w.r.t. initial values e1 and e2:

▶ Value of x21: (2i · e1)2 = 4i · e21
▶ Value of x2: 3i · e2

▶ Insert closed forms into guard x21 < x2:
4i · e21 − 3i · e2 < 0

▶ When does the sign of 4i · e21 − 3i · e2 only depend on e21 ?
▶ When do we have 4i > −3i · e2 ?
▶ At this point, the loop terminates or never will.
▶ Bound on stabilization threshold can be computed automatically
▶ Improve [LPAR ’20] by considering variables individually

10 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Runtime Complexity of TWNLoops

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

Closed forms w.r.t. initial values e1 and e2:

▶ Value of x21: (2i · e1)2 = 4i · e21
▶ Value of x2: 3i · e2

▶ Insert closed forms into guard x21 < x2:
4i · e21 − 3i · e2 < 0

▶ When does the sign of 4i · e21 − 3i · e2 only depend on e21 ?

▶ When do we have 4i > −3i · e2 ?
▶ At this point, the loop terminates or never will.
▶ Bound on stabilization threshold can be computed automatically
▶ Improve [LPAR ’20] by considering variables individually

10 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Runtime Complexity of TWNLoops

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

Closed forms w.r.t. initial values e1 and e2:

▶ Value of x21: (2i · e1)2 = 4i · e21
▶ Value of x2: 3i · e2

▶ Insert closed forms into guard x21 < x2:
4i · e21 − 3i · e2 < 0

▶ When does the sign of 4i · e21 − 3i · e2 only depend on e21 ?
▶ When do we have 4i > −3i · e2 ?

▶ At this point, the loop terminates or never will.
▶ Bound on stabilization threshold can be computed automatically
▶ Improve [LPAR ’20] by considering variables individually

10 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Runtime Complexity of TWNLoops

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

Closed forms w.r.t. initial values e1 and e2:

▶ Value of x21: (2i · e1)2 = 4i · e21
▶ Value of x2: 3i · e2

▶ Insert closed forms into guard x21 < x2:
4i · e21 − 3i · e2 < 0

▶ When does the sign of 4i · e21 − 3i · e2 only depend on e21 ?
▶ When do we have 4i > −3i · e2 ?
▶ At this point, the loop terminates or never will.

▶ Bound on stabilization threshold can be computed automatically
▶ Improve [LPAR ’20] by considering variables individually

10 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Runtime Complexity of TWNLoops

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

Closed forms w.r.t. initial values e1 and e2:

▶ Value of x21: (2i · e1)2 = 4i · e21
▶ Value of x2: 3i · e2

▶ Insert closed forms into guard x21 < x2:
4i · e21 − 3i · e2 < 0

▶ When does the sign of 4i · e21 − 3i · e2 only depend on e21 ?
▶ When do we have 4i > −3i · e2 ?
▶ At this point, the loop terminates or never will.
▶ Bound on stabilization threshold can be computed automatically

▶ Improve [LPAR ’20] by considering variables individually

10 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Runtime Complexity of TWNLoops

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

Closed forms w.r.t. initial values e1 and e2:

▶ Value of x21: (2i · e1)2 = 4i · e21
▶ Value of x2: 3i · e2

▶ Insert closed forms into guard x21 < x2:
4i · e21 − 3i · e2 < 0

▶ When does the sign of 4i · e21 − 3i · e2 only depend on e21 ?
▶ When do we have 4i > −3i · e2 ?
▶ At this point, the loop terminates or never will.
▶ Bound on stabilization threshold can be computed automatically
▶ Improve [LPAR ’20] by considering variables individually
10 of 16 IJCAR 2022

Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Runtime Complexity of TWNLoops

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

▶ Bound the point where the truth
value of the guard stabilizes.

▶ When do we have 4i > −3i · e2?

▶ Prove: i > |e2| implies 4i > −3i · e2
▶ By Termination: |e2| + 1 is runtime bound
▶ Procedure is complete and implemented in

KoAT

11 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Runtime Complexity of TWNLoops

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

▶ Bound the point where the truth
value of the guard stabilizes.

▶ When do we have 4i > −3i · e2?
▶ Prove: i > |e2| implies 4i > −3i · e2

▶ By Termination: |e2| + 1 is runtime bound
▶ Procedure is complete and implemented in

KoAT

11 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Runtime Complexity of TWNLoops

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

▶ Bound the point where the truth
value of the guard stabilizes.

▶ When do we have 4i > −3i · e2?
▶ Prove: i > |e2| implies 4i > −3i · e2

▶ By Termination: |e2| + 1 is runtime bound
▶ Procedure is complete and implemented in

KoAT

4i > −3i · e2

11 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Runtime Complexity of TWNLoops

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

▶ Bound the point where the truth
value of the guard stabilizes.

▶ When do we have 4i > −3i · e2?
▶ Prove: i > |e2| implies 4i > −3i · e2

▶ By Termination: |e2| + 1 is runtime bound
▶ Procedure is complete and implemented in

KoAT

4i > −3i · e2

(4/3)i > −e2

11 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Runtime Complexity of TWNLoops

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

▶ Bound the point where the truth
value of the guard stabilizes.

▶ When do we have 4i > −3i · e2?
▶ Prove: i > |e2| implies 4i > −3i · e2

▶ By Termination: |e2| + 1 is runtime bound
▶ Procedure is complete and implemented in

KoAT

4i > −3i · e2

(4/3)i > −e2

(4/3)i > |e2|

11 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Runtime Complexity of TWNLoops

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

▶ Bound the point where the truth
value of the guard stabilizes.

▶ When do we have 4i > −3i · e2?
▶ Prove: i > |e2| implies 4i > −3i · e2

▶ By Termination: |e2| + 1 is runtime bound
▶ Procedure is complete and implemented in

KoAT

4i > −3i · e2

(4/3)i > −e2

(4/3)i > |e2|

i > log(|e2|)

11 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Runtime Complexity of TWNLoops

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

▶ Bound the point where the truth
value of the guard stabilizes.

▶ When do we have 4i > −3i · e2?
▶ Prove: i > |e2| implies 4i > −3i · e2
▶ By Termination: |e2| + 1 is runtime bound

▶ Procedure is complete and implemented in
KoAT

4i > −3i · e2

(4/3)i > −e2

(4/3)i > |e2|

i > log(|e2|)

11 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Runtime Complexity of TWNLoops

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

▶ Bound the point where the truth
value of the guard stabilizes.

▶ When do we have 4i > −3i · e2?
▶ Prove: i > |e2| implies 4i > −3i · e2
▶ By Termination: |e2| + 1 is runtime bound
▶ Procedure is complete and implemented in

KoAT

4i > −3i · e2

(4/3)i > −e2

(4/3)i > |e2|

i > log(|e2|)

11 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Analyze Program

Sizes

Analyze

Subprogram

TWN

MΦRF

Closed Forms

Simplification

Termination

Stabilization Threshold

Local Runtime Bound

12 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Runtime Complexity of Integer Programs

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x3 > 0) do[
x1
x2

]
←

[
x4
x25

]

while (x21 < x2) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

[
x3
]
←

[
x3 − 1

]
end

▶ How often do we execute the inner loop?
▶ Idea: Analyze different subprograms and
combine results

▶ Respect size of variables:

• Size of x2 is bounded by e25 before inner loop

▶ Use ranking functions (MΦRFs) to analyze
outer loop

13 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Runtime Complexity of Integer Programs

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x3 > 0) do

[
x1
x2

]
←

[
x4
x25

]

while (x21 < x2) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

[
x3
]
←

[
x3 − 1

]

end

▶ How often do we execute the inner loop?
▶ Idea: Analyze different subprograms and
combine results

▶ Respect size of variables:

• Size of x2 is bounded by e25 before inner loop

▶ Use ranking functions (MΦRFs) to analyze
outer loop

13 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Runtime Complexity of Integer Programs

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x3 > 0) do

[
x1
x2

]
←

[
x4
x25

]

while (x21 < x2) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end[
x3
]
←

[
x3 − 1

]
end

▶ How often do we execute the inner loop?
▶ Idea: Analyze different subprograms and
combine results

▶ Respect size of variables:

• Size of x2 is bounded by e25 before inner loop

▶ Use ranking functions (MΦRFs) to analyze
outer loop

13 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Runtime Complexity of Integer Programs

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x3 > 0) do[
x1
x2

]
←

[
x4
x25

]
while (x21 < x2) do[

x1
x2

]
←

[
2 · x1
3 · x2

]
end[
x3
]
←

[
x3 − 1

]
end

▶ How often do we execute the inner loop?
▶ Idea: Analyze different subprograms and
combine results

▶ Respect size of variables:

• Size of x2 is bounded by e25 before inner loop

▶ Use ranking functions (MΦRFs) to analyze
outer loop

13 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Runtime Complexity of Integer Programs

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x3 > 0) do[
x1
x2

]
←

[
x4
x25

]
while (x21 < x2) do[

x1
x2

]
←

[
2 · x1
3 · x2

]
end[
x3
]
←

[
x3 − 1

]
end

▶ How often do we execute the inner loop?
▶ Idea: Analyze different subprograms and
combine results

▶ Respect size of variables:

• Size of x2 is bounded by e25 before inner loop

▶ Use ranking functions (MΦRFs) to analyze
outer loop

13 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Runtime Complexity of Integer Programs

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x3 > 0) do[
x1
x2

]
←

[
x4
x25

]
while (x21 < x2) do[

x1
x2

]
←

[
2 · x1
3 · x2

]
end[
x3
]
←

[
x3 − 1

]
end

▶ How often do we execute the inner loop?

▶ Idea: Analyze different subprograms and
combine results

▶ Respect size of variables:

• Size of x2 is bounded by e25 before inner loop

▶ Use ranking functions (MΦRFs) to analyze
outer loop

13 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Runtime Complexity of Integer Programs

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x3 > 0) do[
x1
x2

]
←

[
x4
x25

]
while (x21 < x2) do[

x1
x2

]
←

[
2 · x1
3 · x2

]
end[
x3
]
←

[
x3 − 1

]
end

▶ How often do we execute the inner loop?
▶ Idea: Analyze different subprograms and
combine results

▶ Respect size of variables:

• Size of x2 is bounded by e25 before inner loop

▶ Use ranking functions (MΦRFs) to analyze
outer loop

13 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Runtime Complexity of Integer Programs

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x3 > 0) do[
x1
x2

]
←

[
x4
x25

]
costs: |e2| + 1[
x3
]
←

[
x3 − 1

]
end

▶ How often do we execute the inner loop?
▶ Idea: Analyze different subprograms and
combine results

▶ Respect size of variables:

• Size of x2 is bounded by e25 before inner loop

▶ Use ranking functions (MΦRFs) to analyze
outer loop

Inner loop executions:

|e3| ·

(|e2| + 1)

13 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Runtime Complexity of Integer Programs

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x3 > 0) do[
x1
x2

]
←

[
x4
x25

]
costs: |e2| + 1[
x3
]
←

[
x3 − 1

]
end

▶ How often do we execute the inner loop?
▶ Idea: Analyze different subprograms and
combine results

▶ Respect size of variables:

• Size of x2 is bounded by e25 before inner loop
▶ Use ranking functions (MΦRFs) to analyze
outer loop

Inner loop executions:

|e3| ·

(|e2| + 1)

13 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Runtime Complexity of Integer Programs

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x3 > 0) do

costs: |e25| + 1[
x3
]
←

[
x3 − 1

]
end

▶ How often do we execute the inner loop?
▶ Idea: Analyze different subprograms and
combine results

▶ Respect size of variables:
• Size of x2 is bounded by e25 before inner loop

▶ Use ranking functions (MΦRFs) to analyze
outer loop

Inner loop executions:

|e3| ·

(|e5|2 + 1)

13 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Runtime Complexity of Integer Programs

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x3 > 0) do

costs: |e25| + 1[
x3
]
←

[
x3 − 1

]
end

▶ How often do we execute the inner loop?
▶ Idea: Analyze different subprograms and
combine results

▶ Respect size of variables:
• Size of x2 is bounded by e25 before inner loop

▶ Use ranking functions (MΦRFs) to analyze
outer loop

Inner loop executions: |e3| · (|e5|2 + 1)

13 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Runtime Complexity of Integer Programs

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x3 > 0) do

costs: |e25| + 1[
x3
]
←

[
x3 − 1

]
end

▶ How often do we execute the inner loop?
▶ Idea: Analyze different subprograms and
combine results

▶ Respect size of variables:
• Size of x2 is bounded by e25 before inner loop

▶ Use ranking functions (MΦRFs) to analyze
outer loop

Inner loop executions: |e3| · (|e5|2 + 1) ∈ O(n3)

13 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Analyze Program

Sizes
[TOPLAS ’16]

Analyze

Subprogram

TWN

MΦRF
[BenAmram, Genaim 2017; SRH60]

Closed Forms

Simplification

Termination

Stabilization Threshold

Local Runtime Bound

14 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Analyze Program Sizes
[TOPLAS ’16]

Analyze

Subprogram

TWN

MΦRF
[BenAmram, Genaim 2017; SRH60]

Closed Forms

Simplification

Termination

Stabilization Threshold

Local Runtime Bound

14 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Overview

Analyze Program Sizes
[TOPLAS ’16]

Analyze

Subprogram

TWN MΦRF
[BenAmram, Genaim 2017; SRH60]

Closed Forms

Simplification

Termination

Stabilization Threshold

Local Runtime Bound

14 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Evaluation of our Implementation in KoAT2

▶ C_Complexity consisting of 504 (mainly linear) benchmarks from TPDB
O(1) O(n) O(n2) O(n>2) <∞ AVG(s)

KoAT2 + TWN 20 111 3 2 136 2.54

Loopus 17 170 49 5 241 0.42
KoAT1 25 169 74 12 286 1.77
CoFloCo 22 196 66 5 289 0.62
MaxCore 23 216 66 7 312 2.02
KoAT2 + MΦRF 24 226 68 10 328 8.23
KoAT2 + TWN + MΦRF 26 231 73 13 344 8.72

succ. rate
35%
62%
74%
75%
80%
85%
89%

▶ At most 386 benchmarks might terminate
▶ KoAT2 + TWN + MΦRF solves 89% of benchmarks which might terminate

15 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Evaluation of our Implementation in KoAT2

▶ C_Complexity consisting of 504 (mainly linear) benchmarks from TPDB
O(1) O(n) O(n2) O(n>2) <∞ AVG(s)

KoAT2 + TWN 20 111 3 2 136 2.54
Loopus 17 170 49 5 241 0.42
KoAT1 25 169 74 12 286 1.77
CoFloCo 22 196 66 5 289 0.62
MaxCore 23 216 66 7 312 2.02

KoAT2 + MΦRF 24 226 68 10 328 8.23
KoAT2 + TWN + MΦRF 26 231 73 13 344 8.72

succ. rate
35%
62%
74%
75%
80%
85%
89%

▶ At most 386 benchmarks might terminate
▶ KoAT2 + TWN + MΦRF solves 89% of benchmarks which might terminate

15 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Evaluation of our Implementation in KoAT2

▶ C_Complexity consisting of 504 (mainly linear) benchmarks from TPDB
O(1) O(n) O(n2) O(n>2) <∞ AVG(s)

KoAT2 + TWN 20 111 3 2 136 2.54
Loopus 17 170 49 5 241 0.42
KoAT1 25 169 74 12 286 1.77
CoFloCo 22 196 66 5 289 0.62
MaxCore 23 216 66 7 312 2.02
KoAT2 + MΦRF 24 226 68 10 328 8.23

KoAT2 + TWN + MΦRF 26 231 73 13 344 8.72

succ. rate
35%
62%
74%
75%
80%
85%
89%

▶ At most 386 benchmarks might terminate
▶ KoAT2 + TWN + MΦRF solves 89% of benchmarks which might terminate

15 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Evaluation of our Implementation in KoAT2

▶ C_Complexity consisting of 504 (mainly linear) benchmarks from TPDB
O(1) O(n) O(n2) O(n>2) <∞ AVG(s)

KoAT2 + TWN 20 111 3 2 136 2.54
Loopus 17 170 49 5 241 0.42
KoAT1 25 169 74 12 286 1.77
CoFloCo 22 196 66 5 289 0.62
MaxCore 23 216 66 7 312 2.02
KoAT2 + MΦRF 24 226 68 10 328 8.23
KoAT2 + TWN + MΦRF 26 231 73 13 344 8.72

succ. rate
35%
62%
74%
75%
80%
85%
89%

▶ At most 386 benchmarks might terminate
▶ KoAT2 + TWN + MΦRF solves 89% of benchmarks which might terminate

15 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Evaluation of our Implementation in KoAT2

▶ C_Complexity consisting of 504 (mainly linear) benchmarks from TPDB
O(1) O(n) O(n2) O(n>2) <∞ AVG(s)

KoAT2 + TWN 20 111 3 2 136 2.54
Loopus 17 170 49 5 241 0.42
KoAT1 25 169 74 12 286 1.77
CoFloCo 22 196 66 5 289 0.62
MaxCore 23 216 66 7 312 2.02
KoAT2 + MΦRF 24 226 68 10 328 8.23
KoAT2 + TWN + MΦRF 26 231 73 13 344 8.72

succ. rate
35%
62%
74%
75%
80%
85%
89%

▶ At most 386 benchmarks might terminate

▶ KoAT2 + TWN + MΦRF solves 89% of benchmarks which might terminate

15 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Evaluation of our Implementation in KoAT2

▶ C_Complexity consisting of 504 (mainly linear) benchmarks from TPDB
O(1) O(n) O(n2) O(n>2) <∞ AVG(s)

KoAT2 + TWN 20 111 3 2 136 2.54
Loopus 17 170 49 5 241 0.42
KoAT1 25 169 74 12 286 1.77
CoFloCo 22 196 66 5 289 0.62
MaxCore 23 216 66 7 312 2.02
KoAT2 + MΦRF 24 226 68 10 328 8.23
KoAT2 + TWN + MΦRF 26 231 73 13 344 8.72

succ. rate
35%
62%
74%
75%
80%
85%
89%

▶ At most 386 benchmarks might terminate
▶ KoAT2 + TWN + MΦRF solves 89% of benchmarks which might terminate

15 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

Conclusion & Future Work

▶ Conclusion

• Introduced modular approach for complexity analysis combining

– Procedure to handle twnloops – MΦRFs

• Handle loops with nonlinear arithmetic
• Complete for all twnloops with linear arithmetic
• KoAT2 outperforms other stateoftheart tools

▶ Future work

• Extend class of loops by transformations

https://aprove-developers.github.io/KoAT_TWN/

Thank You!

16 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://aprove-developers.github.io/KoAT_TWN/

Conclusion & Future Work

▶ Conclusion
• Introduced modular approach for complexity analysis combining

– Procedure to handle twnloops – MΦRFs

• Handle loops with nonlinear arithmetic
• Complete for all twnloops with linear arithmetic
• KoAT2 outperforms other stateoftheart tools

▶ Future work

• Extend class of loops by transformations

https://aprove-developers.github.io/KoAT_TWN/

Thank You!

16 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://aprove-developers.github.io/KoAT_TWN/

Conclusion & Future Work

▶ Conclusion
• Introduced modular approach for complexity analysis combining

– Procedure to handle twnloops

– MΦRFs

• Handle loops with nonlinear arithmetic
• Complete for all twnloops with linear arithmetic
• KoAT2 outperforms other stateoftheart tools

▶ Future work

• Extend class of loops by transformations

https://aprove-developers.github.io/KoAT_TWN/

Thank You!

16 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://aprove-developers.github.io/KoAT_TWN/

Conclusion & Future Work

▶ Conclusion
• Introduced modular approach for complexity analysis combining

– Procedure to handle twnloops – MΦRFs

• Handle loops with nonlinear arithmetic
• Complete for all twnloops with linear arithmetic
• KoAT2 outperforms other stateoftheart tools

▶ Future work

• Extend class of loops by transformations

https://aprove-developers.github.io/KoAT_TWN/

Thank You!

16 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://aprove-developers.github.io/KoAT_TWN/

Conclusion & Future Work

▶ Conclusion
• Introduced modular approach for complexity analysis combining

– Procedure to handle twnloops – MΦRFs

• Handle loops with nonlinear arithmetic

• Complete for all twnloops with linear arithmetic
• KoAT2 outperforms other stateoftheart tools

▶ Future work

• Extend class of loops by transformations

https://aprove-developers.github.io/KoAT_TWN/

Thank You!

16 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://aprove-developers.github.io/KoAT_TWN/

Conclusion & Future Work

▶ Conclusion
• Introduced modular approach for complexity analysis combining

– Procedure to handle twnloops – MΦRFs

• Handle loops with nonlinear arithmetic
• Complete for all twnloops with linear arithmetic

• KoAT2 outperforms other stateoftheart tools
▶ Future work

• Extend class of loops by transformations

https://aprove-developers.github.io/KoAT_TWN/

Thank You!

16 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://aprove-developers.github.io/KoAT_TWN/

Conclusion & Future Work

▶ Conclusion
• Introduced modular approach for complexity analysis combining

– Procedure to handle twnloops – MΦRFs

• Handle loops with nonlinear arithmetic
• Complete for all twnloops with linear arithmetic
• KoAT2 outperforms other stateoftheart tools

▶ Future work

• Extend class of loops by transformations

https://aprove-developers.github.io/KoAT_TWN/

Thank You!

16 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://aprove-developers.github.io/KoAT_TWN/

Conclusion & Future Work

▶ Conclusion
• Introduced modular approach for complexity analysis combining

– Procedure to handle twnloops – MΦRFs

• Handle loops with nonlinear arithmetic
• Complete for all twnloops with linear arithmetic
• KoAT2 outperforms other stateoftheart tools

▶ Future work

• Extend class of loops by transformations

https://aprove-developers.github.io/KoAT_TWN/

Thank You!

16 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://aprove-developers.github.io/KoAT_TWN/

Conclusion & Future Work

▶ Conclusion
• Introduced modular approach for complexity analysis combining

– Procedure to handle twnloops – MΦRFs

• Handle loops with nonlinear arithmetic
• Complete for all twnloops with linear arithmetic
• KoAT2 outperforms other stateoftheart tools

▶ Future work
• Extend class of loops by transformations

https://aprove-developers.github.io/KoAT_TWN/

Thank You!

16 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://aprove-developers.github.io/KoAT_TWN/

Conclusion & Future Work

▶ Conclusion
• Introduced modular approach for complexity analysis combining

– Procedure to handle twnloops – MΦRFs

• Handle loops with nonlinear arithmetic
• Complete for all twnloops with linear arithmetic
• KoAT2 outperforms other stateoftheart tools

▶ Future work
• Extend class of loops by transformations

https://aprove-developers.github.io/KoAT_TWN/

Thank You!

16 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://aprove-developers.github.io/KoAT_TWN/

Conclusion & Future Work

▶ Conclusion
• Introduced modular approach for complexity analysis combining

– Procedure to handle twnloops – MΦRFs

• Handle loops with nonlinear arithmetic
• Complete for all twnloops with linear arithmetic
• KoAT2 outperforms other stateoftheart tools

▶ Future work
• Extend class of loops by transformations

https://aprove-developers.github.io/KoAT_TWN/

Thank You!

16 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://aprove-developers.github.io/KoAT_TWN/

Conclusion & Future Work

▶ Conclusion
• Introduced modular approach for complexity analysis combining

– Procedure to handle twnloops – MΦRFs

• Handle loops with nonlinear arithmetic
• Complete for all twnloops with linear arithmetic
• KoAT2 outperforms other stateoftheart tools

▶ Future work
• Extend class of loops by transformations

https://aprove-developers.github.io/KoAT_TWN/

Thank You!

16 of 16 IJCAR 2022
Nils Lommen, Eleanore Meyer, and Jürgen Giesl
RWTH Aachen University – LuFGi2

https://aprove-developers.github.io/KoAT_TWN/

