

Automatic Complexity Analysis of Integer Programs via Triangular Weakly Non-Linear Loops

11th International Joint Conference on Automated Reasoning

Nils Lommen, Eleanore Meyer, and Jürgen Giesl

$$
\begin{array}{c} \text{while } (x_1^2 < x_2 \land x_1 > 0) \text{ do} \\ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \leftarrow \begin{bmatrix} 2 \cdot x_1 + x_3^2 \\ 3 \cdot x_2 \\ x_3 \end{bmatrix} \\ \text{end} \\ \\ \text{end} \end{array}
$$

Goal: Infer (upper) runtime bounds for "real-world" programs

$$
\begin{array}{c} \text{while } (x_1^2 < x_2 \land x_1 > 0) \text{ do} \\ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \leftarrow \begin{bmatrix} 2 \cdot x_1 + x_3^2 \\ 3 \cdot x_2 \\ x_3 \end{bmatrix} \\ \text{end} \\ \\ \text{end} \end{array}
$$

▶ Does this loop terminate?

$$
\begin{array}{c}\text{while } (x_1^2 < x_2 \land x_1 > 0) \text{ do} \\ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \leftarrow \begin{bmatrix} 2 \cdot x_1 + x_3^2 \\ 3 \cdot x_2 \\ x_3 \end{bmatrix} \\ \text{end} \\ \\
$$

- ▶ Does this loop terminate?
- ▶ How often do we execute the loop?

$$
\begin{array}{c} \text{while } (x_1^2 < x_2 \land x_1 > 0) \text{ do} \\ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \leftarrow \begin{bmatrix} 2 \cdot x_1 + x_3^2 \\ 3 \cdot x_2 \\ x_3 \end{bmatrix} \\ \text{end} \end{array}
$$

- ▶ Does this loop terminate?
- ▶ How often do we execute the loop?
	- Linear ranking functions fail.

 $\overline{1}$

end

x2

while
$$
(x_1^2 < x_2 \land x_1 > 0)
$$
 do
\n $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \quad \begin{bmatrix} 2 \cdot x_1 + x_2^2 \\ x_2 \end{bmatrix}$

$$
\begin{array}{c}\n\mathtt{x}_1 \\
\mathtt{x}_2 \\
\mathtt{x}_3\n\end{array}\n\leftarrow\n\begin{bmatrix}\n2 \cdot \mathtt{x}_1 + \mathtt{x}_3^2 \\
3 \cdot \mathtt{x}_2 \\
\mathtt{x}_3\n\end{bmatrix}
$$

- ▶ Does this loop terminate?
- ▶ How often do we execute the loop?
	- Linear ranking functions fail.
	- Existing tools usually fail with non-linear arithmetic

$$
\begin{array}{ll}\n\text{while } (x_1^2 < x_2 \land x_1 > 0) \text{ do} \\
\text{[x,]} & [2 \cdot x_1 + x_2^2]\n\end{array}
$$

$$
\begin{bmatrix} \mathtt{x}_1 \\ \mathtt{x}_2 \\ \mathtt{x}_3 \end{bmatrix} \leftarrow \begin{bmatrix} 2\cdot\mathtt{x}_1 + \mathtt{x}_3^2 \\ 3\cdot\mathtt{x}_2 \\ \mathtt{x}_3 \end{bmatrix}
$$
end

- ▶ Does this loop terminate?
- ▶ How often do we execute the loop?
	- Linear ranking functions fail.
	- Existing tools usually fail with non-linear arithmetic
	- Can compute non-linear runtime bounds for twn-loops.

 X_3

end

Goal: Infer (upper) runtime bounds for "real-world" programs

$$
\begin{array}{c} \text{while } (x_1^2 < x_2 \wedge x_1 > 0) \text{ do} \\ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} 2 \cdot x_1 + x_3^2 \\ 3 \cdot x_2 \end{bmatrix} \end{array}
$$

 X_3

- ▶ Does this loop terminate?
- ▶ How often do we execute the loop?
	- Linear ranking functions fail.
	- Existing tools usually fail with non-linear arithmetic
	- Can compute non-linear runtime bounds for twn-loops.

▶ Combine [TOPLAS '16] and [SAS '20; LPAR '20] in automatic complexity analysis tool KoAT

 X_3

end

Goal: Infer (upper) runtime bounds for "real-world" programs

$$
\begin{array}{c} \text{while } (x_1^2 < x_2 \wedge x_1 > 0) \text{ do} \\ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} 2 \cdot x_1 + x_3^2 \\ 3 \cdot x_2 \end{bmatrix} \end{array}
$$

 X_3

- ▶ Does this loop terminate?
- ▶ How often do we execute the loop?
	- Linear ranking functions fail.
	- Existing tools usually fail with non-linear arithmetic
	- Can compute non-linear runtime bounds for twn-loops.
- ▶ Combine [TOPLAS '16] and [SAS '20; LPAR '20] in automatic complexity analysis tool KoAT
- \blacktriangleright Approach is complete for all terminating twn-loops

3 of 16 IJCAR 2022 **Nils Lommen**, Eleanore Meyer, and Jürgen Giesl RWTH Aachen University – LuFGi2

TWN-Loops

while (7) do
\n
$$
\begin{bmatrix} x_1 \\ \cdots \\ x_d \end{bmatrix} \leftarrow \begin{bmatrix} c_1 \cdot x_1 + p_1 \\ \cdots \\ c_d \cdot x_d + p_d \end{bmatrix}
$$
\nend

▶ *τ* built from *∧*, *∨*, (*¬*, …) and polynomial inequations over $\mathbb Z$

TWN-Loops

while
$$
(\tau)
$$
 do
\n
$$
\begin{bmatrix} x_1 \\ \cdots \\ x_d \end{bmatrix} \leftarrow \begin{bmatrix} c_1 \cdot x_1 + p_1 \\ \cdots \\ c_d \cdot x_d + p_d \end{bmatrix}
$$
\nend

▶ *τ* built from *∧*, *∨*, (*¬*, …) and polynomial inequations over $\mathbb Z$

$$
\blacktriangleright c_1,\ldots,c_d\in\mathbb{Z}
$$

while
$$
(\tau)
$$
 do
\n
$$
\begin{bmatrix} x_1 \\ \cdots \\ x_d \end{bmatrix} \leftarrow \begin{bmatrix} c_1 \cdot x_1 + p_1 \\ \cdots \\ c_d \cdot x_d + p_d \end{bmatrix}
$$
\nend

$$
\blacktriangleright c_1,\ldots,c_d\in\mathbb{Z}
$$

▶ Variable value depends at most linearly on its previous value.

while (7) do
\n
$$
\begin{bmatrix} x_1 \\ \cdots \\ x_d \end{bmatrix} \leftarrow \begin{bmatrix} c_1 \cdot x_1 + p_1 \\ \cdots \\ c_d \cdot x_d + p_d \end{bmatrix}
$$
\nend

- ▶ *τ* built from *∧*, *∨*, (*¬*, …) and polynomial inequations over $\mathbb Z$
- ▶ $c_1, \ldots, c_d \in \mathbb{Z}$

- ▶ Variable value depends at most linearly on its previous value.
	- Prevent super-exponential growth: $x \leftarrow x^2$ (so the value is $2^{(2^i)} \cdot e$)

while (7) do
\n
$$
\begin{bmatrix} x_1 \\ \cdots \\ x_d \end{bmatrix} \leftarrow \begin{bmatrix} c_1 \cdot x_1 + p_1 \\ \cdots \\ c_d \cdot x_d + p_d \end{bmatrix}
$$
\nend

$$
\blacktriangleright c_1,\ldots,c_d\in\mathbb{Z}
$$

$$
\blacktriangleright p_i \in \mathbb{Z}[x_{i+1},\ldots,x_d] \text{ non-linear}
$$

▶ Variable value depends at most linearly on its previous value.

• Prevent super-exponential growth: $x \leftarrow x^2$ (so the value is $2^{(2^i)} \cdot e$)

$$
\begin{array}{c}\n\text{while } (\tau) \text{ do} \\
\begin{bmatrix} x_1 \\ \cdots \\ x_d \end{bmatrix} \leftarrow \begin{bmatrix} c_1 \cdot x_1 + p_1 \\ \cdots \\ c_d \cdot x_d + p_d \end{bmatrix} \\
\text{end}\n\end{array}
$$

$$
\blacktriangleright c_1,\ldots,c_d\in\mathbb{Z}
$$

- ▶ $p_i \in \mathbb{Z}[x_{i+1}, \ldots, x_d]$ non-linear
- ▶ Variable value depends at most linearly on its previous value.
	- Prevent super-exponential growth: $x \leftarrow x^2$ (so the value is $2^{(2^i)} \cdot e$)
- ▶ Polynomial dependencies only of variables with higher index

$$
\begin{aligned}\n\text{while } & (\tau) \text{ do} \\
\begin{bmatrix} x_1 \\ \vdots \\ x_d \end{bmatrix} \leftarrow \begin{bmatrix} c_1 \cdot x_1 + p_1 \\ \vdots \\ c_d \cdot x_d + p_d \end{bmatrix} \\
\text{end}\n\end{aligned}
$$

$$
\blacktriangleright c_1,\ldots,c_d\in\mathbb{Z}
$$

- ▶ $p_i \in \mathbb{Z}[x_{i+1}, \ldots, x_d]$ non-linear
- ▶ Variable value depends at most linearly on its previous value.
	- Prevent super-exponential growth: $x \leftarrow x^2$ (so the value is $2^{(2^i)} \cdot e$)
- ▶ Polynomial dependencies only of variables with higher index
	- No cyclic dependencies: $x_1 \leftarrow x_2$ and $x_2 \leftarrow x_1$

$$
\blacktriangleright c_1,\ldots,c_d\in\mathbb{Z}
$$

$$
\blacktriangleright p_i \in \mathbb{Z}[x_{i+1},\ldots,x_d] \text{ non-linear}
$$

▶ Variable value depends at most linearly on its previous value.

- Prevent super-exponential growth: $x \leftarrow x^2$ (so the value is $2^{(2^i)} \cdot e$)
- ▶ Polynomial dependencies only of variables with higher index
	- No cyclic dependencies: $x_1 \leftarrow x_2$ and $x_2 \leftarrow x_1$

TWN-Loops

$$
\begin{array}{ll} \text{while} & (x_1^2 < x_2 \wedge x_1 > 0) \text{ do} \\ & \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \leftarrow \begin{bmatrix} 2 \cdot x_1 \\ 3 \cdot x_2 \\ 1 \cdot x_3 \end{bmatrix} + \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \\ \text{end} \\ \text{end} \\ \end{array}
$$

▶ *τ* built from *∧*, *∨*, (*¬*, …) and polynomial inequations over $\mathbb Z$

$$
\blacktriangleright c_1,\ldots,c_d\in\mathbb{Z}
$$

▶ $p_i \in \mathbb{Z}[x_{i+1}, \ldots, x_d]$ non-linear

- ▶ Variable value depends at most linearly on its previous value.
	- Prevent super-exponential growth: $x \leftarrow x^2$ (so the value is $2^{(2^i)} \cdot e$)
- ▶ Polynomial dependencies only of variables with higher index
	- No cyclic dependencies: $x_1 \leftarrow x_2$ and $x_2 \leftarrow x_1$

Goal: Infer closed forms

$$
\begin{array}{c} \text{while } (x_1^2 < x_2 \wedge x_1 > 0) \text{ do} \\ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \leftarrow \begin{bmatrix} 2 \cdot x_1 + x_3^2 \\ 3 \cdot x_2 \\ x_3 \end{bmatrix} \\ \text{end} \\ \\ \text{end} \end{array}
$$

Goal: Infer closed forms

$$
\begin{array}{c} \text{while } (x_1^2 < x_2 \land x_1 > 0) \text{ do} \\ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \leftarrow \begin{bmatrix} 2 \cdot x_1 + x_3^2 \\ 3 \cdot x_2 \\ x_3 \end{bmatrix} \\ \text{end} \\ \\ \text{end} \end{array}
$$

 \blacktriangleright Closed forms after *i* iterations w.r.t. initial values e_1, e_2 and e_3 :

Goal: Infer closed forms

$$
\begin{array}{c} \text{while } (x_1^2 < x_2 \land x_1 > 0) \text{ do} \\ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \leftarrow \begin{bmatrix} 2 \cdot x_1 + x_3^2 \\ 3 \cdot x_2 \\ x_3 \end{bmatrix} \\ \text{end} \\ \\
$$

 \blacktriangleright Closed forms after *i* iterations w.r.t. initial values e_1, e_2 and e_3 :

• Value of x_1 : $2^i \cdot (e_1 + e_3^2)$ $\binom{2}{3}$ – e_3^2 3

Goal: Infer closed forms

$$
\begin{array}{c}\text{while } (x_1^2 < x_2 \land x_1 > 0) \text{ do} \\ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} < \begin{bmatrix} 2 \cdot x_1 + x_3^2 \\ 3 \cdot x_2 \\ x_3 \end{bmatrix} \\ \text{end} \end{array}
$$

 \blacktriangleright Closed forms after *i* iterations w.r.t. initial values e_1, e_2 and e_3 :

• Value of x_1^2 2: $(2^i \cdot (e_1 + e_3^2))$ $\binom{2}{3}$ – e_3^2 $_{3}^{2})^{2}$

Goal: Infer closed forms and remove non-linear parts to reduce degree

$$
\begin{array}{c} \text{while } (x_1^2 < x_2 \wedge x_1 > 0) \text{ do} \\ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \leftarrow \begin{bmatrix} 2 \cdot x_1 + x_3^2 \\ 3 \cdot x_2 \\ x_3 \end{bmatrix} \\ \text{end} \\ \\ \text{end} \end{array}
$$

 \blacktriangleright Closed forms after *i* iterations w.r.t. initial values e_1, e_2 and e_3 :

• Value of x_1^2 2: $(2^i \cdot (e_1 + e_3^2))$ $\binom{2}{3}$ – e_3^2 $_{3}^{2})^{2}$

Goal: Infer closed forms and remove non-linear parts to reduce degree

$$
\begin{array}{c}\n\text{while } (x_1^2 < x_2 \land x_1 > 0) \text{ do} \\
\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \leftarrow \begin{bmatrix} 2 \cdot x_1 + x_3^2 \\ 3 \cdot x_2 \\ x_3 \end{bmatrix} \\
\text{end}\n\end{array}
$$

$$
\blacktriangleright
$$
 Value of x_3^2 always non-negative

 \blacktriangleright Closed forms after *i* iterations w.r.t. initial values e_1, e_2 and e_3 :

Goal: Infer closed forms and remove non-linear parts to reduce degree

$$
\begin{array}{c} \text{while } (x_1^2 < x_2 \wedge x_1 > 0) \text{ do} \\ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \leftarrow \begin{bmatrix} 2 \cdot x_1 + x_3^2 \\ 3 \cdot x_2 \\ x_3 \end{bmatrix} \\ \text{end} \\ \\ \text{end} \end{array}
$$

► Value of
$$
x_3^2
$$
 always non-negative
\n• Removing x_3^2 increases runtime

 \blacktriangleright Closed forms after *i* iterations w.r.t. initial values e_1, e_2 and e_3 :

Goal: Infer closed forms and remove non-linear parts to reduce degree

$$
\begin{array}{c} \text{while } (x_1^2 < x_2 \wedge x_1 > 0) \text{ do} \\ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} \leftarrow \begin{bmatrix} 2 \cdot x_1 \\ 3 \cdot x_2 \\ x_3 \end{bmatrix} \\ \text{end} \end{array}
$$

► Value of
$$
x_3^2
$$
 always non-negative
\n• Removing x_3^2 increases runtime

 \blacktriangleright Closed forms after *i* iterations w.r.t. initial values e_1, e_2 and e_3 :

Goal: Infer closed forms and remove non-linear parts to reduce degree

$$
\begin{array}{l} \text { while } \left(x_1^2 < x_2 \wedge x_1 > 0 \right) \text { do } \\ \left[x_1\atop x_2\right] \leftarrow \left[2 \cdot x_1\atop 3 \cdot x_2\right] \\ \text { end } \end{array}
$$

► Value of
$$
x_3^2
$$
 always non-negative
\n• Removing x_3^2 increases runtime

 \blacktriangleright Closed forms after *i* iterations w.r.t. initial values e_1, e_2 and e_3 :

Goal: Infer closed forms and remove non-linear parts to reduce degree

$$
\begin{array}{l} \text { while } \left(x_1^2 < x_2 \wedge x_1 > 0 \right) \text { do } \\ \left[x_1\atop x_2\right] \leftarrow \left[2 \cdot x_1\atop 3 \cdot x_2\right] \\ \text { end } \end{array}
$$

► Value of
$$
x_3^2
$$
 always non-negative
\n• Removing x_3^2 increases runtime

 \blacktriangleright Closed forms after *i* iterations w.r.t. initial values e_1 and e_2 :

• Value of x_1 : $2^i \cdot e_1$
Goal: Infer closed forms and remove non-linear parts to reduce degree

$$
\begin{array}{l} \text { while } \left(x_1^2 < x_2 \wedge x_1 > 0 \right) \text { do } \\ \left[x_1\atop x_2\right] \leftarrow \left[2 \cdot x_1\atop 3 \cdot x_2\right] \\ \text { end } \end{array}
$$

► Value of
$$
x_3^2
$$
 always non-negative
\n• Removing x_3^2 increases runtime

 \blacktriangleright Closed forms after *i* iterations w.r.t. initial values e_1 and e_2 :

• Value of x_1^2 $\frac{2}{1}$: $(2^i \cdot e_1)^2 = 4^i \cdot e_1^2$ 1

Goal: Infer closed forms and remove non-linear parts to reduce degree

$$
\begin{array}{l} \text { while } \left(x_1^2 < x_2 \wedge x_1 > 0 \right) \text { do } \\ \left[x_1\atop x_2\right] \leftarrow \left[2 \cdot x_1\atop 3 \cdot x_2\right] \\ \text { end } \end{array}
$$

► Value of
$$
x_3^2
$$
 always non-negative
\n• Removing x_3^2 increases runtime

 \blacktriangleright Closed forms after *i* iterations w.r.t. initial values e_1 and e_2 :

• Value of
$$
x_1^2
$$
: $(2^i \cdot e_1)^2 = 4^i \cdot e_1^2$

• Value of x_2 : $3^i \cdot e_2$

Goal: Infer closed forms and remove non-linear parts to reduce degree

$$
\begin{array}{l} \text { while } \left(x_1^2 < x_2 \wedge x_1 > 0 \right) \text { do } \\ \left[x_1\atop x_2\right] \leftarrow \left[2 \cdot x_1\atop 3 \cdot x_2\right] \\ \text { end } \end{array}
$$

- \blacktriangleright Value of x_3^2 always non-negative • Removing x_3^2 $\frac{2}{3}$ increases runtime
- \blacktriangleright Eliminated non-linear occurrence of x_3 in closed forms

 \blacktriangleright Closed forms after *i* iterations w.r.t. initial values e_1 and e_2 :

• Value of
$$
x_1^2
$$
: $(2^i \cdot e_1)^2 = 4^i \cdot e_1^2$

• Value of x_2 : $3^i \cdot e_2$

Goal: Infer closed forms and remove non-linear parts to reduce degree

$$
\begin{array}{l} \text { while } \left(x_1^2 < x_2 \wedge x_1 > 0 \right) \text { do } \\ \left[x_1\atop x_2\right] \leftarrow \left[2 \cdot x_1\atop 3 \cdot x_2\right] \\ \text { end } \end{array}
$$

- \blacktriangleright Value of x_3^2 always non-negative
	- Removing x_3^2 $\frac{2}{3}$ increases runtime
- \blacktriangleright Eliminated non-linear occurrence of x_3 in closed forms
- ▶ Novel approach infers tighter bounds than [LPAR '20]

 \blacktriangleright Closed forms after *i* iterations w.r.t. initial values e_1 and e_2 :

• Value of
$$
x_1^2
$$
: $(2^i \cdot e_1)^2 = 4^i \cdot e_1^2$

• Value of x_2 : $3^i \cdot e_2$

Goal: Infer closed forms and remove non-linear parts to reduce degree

$$
\begin{array}{c} \text{while } (x_1^2 < x_2 \wedge x_1 > 0) \text{ do} \\ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} 2 \cdot x_1 \\ 3 \cdot x_2 \end{bmatrix} \\ \text{end} \end{array}
$$

- \blacktriangleright Value of x_3^2 always non-negative
	- Removing x_3^2 $\frac{2}{3}$ increases runtime
- \blacktriangleright Eliminated non-linear occurrence of x_3 in closed forms
- ▶ Novel approach infers tighter bounds than [LPAR '20]

 \blacktriangleright Closed forms after *i* iterations w.r.t. initial values e_1 and e_2 :

- Value of x_1^2 $\frac{2}{1}$: $(2^i \cdot e_1)^2 = 4^i \cdot e_1^2$ 1
- Value of x_2 : $3^i \cdot e_2$
- ▶ KoAT automatically infers closed forms [CAV '19] and applies simplification

Overview

Does the loop terminate?

$$
\begin{array}{ll}\text{while } (x_1^2 < x_2 \land x_1 > 0) \text{ do} \\ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} 2 \cdot x_1 \\ 3 \cdot x_2 \end{bmatrix} \\ \text{end} \end{array}
$$

Does the loop terminate?

$$
\begin{array}{ll}\text{while } (x_1^2 < x_2 \land x_1 > 0) \text{ do} \\ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} < \begin{bmatrix} 2 \cdot x_1 \\ 3 \cdot x_2 \end{bmatrix} \\ \text{end} \end{array}
$$

▶ Yes!

▶ Value of $\frac{x_1^2}{x_1}$ eventually *outgrows* value of x_2

Does the loop terminate?

$$
\begin{array}{ll}\text{while } (x_1^2 < x_2 \land x_1 > 0) \text{ do} \\ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} 2 \cdot x_1 \\ 3 \cdot x_2 \end{bmatrix} \\ \text{end} \end{array}
$$

- ▶ Yes!
- ▶ Value of $\frac{x_1^2}{x_1}$ eventually *outgrows* value of x_2
- ▶ At some point we always have

$$
4^i \cdot e_1^2 \ge 3^i \cdot e_2.
$$

Does the loop terminate?

$$
\begin{array}{ll}\text{while } (x_1^2 < x_2 \land x_1 > 0) \text{ do} \\ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} 2 \cdot x_1 \\ 3 \cdot x_2 \end{bmatrix} \\ \text{end} \end{array}
$$

 \blacktriangleright Yes!

- ▶ Value of $\frac{x_1^2}{x_1}$ eventually *outgrows* value of x_2
- ▶ At some point we always have

 $4^{i} \cdot e_1^2 \geq 3^{i} \cdot e_2.$

\blacktriangleright Reduce Termination to an existential formula over $\mathbb Z$ [SAS '20]

Does the loop terminate?

$$
\begin{array}{ll}\text{while } (x_1^2 < x_2 \land x_1 > 0) \text{ do} \\ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} 2 \cdot x_1 \\ 3 \cdot x_2 \end{bmatrix} \\ \text{end} \end{array}
$$

- \blacktriangleright Yes!
- ▶ Value of $\frac{x_1^2}{x_1}$ eventually *outgrows* value of x_2
- ▶ At some point we always have

 $4^{i} \cdot e_1^2 \geq 3^{i} \cdot e_2.$

- \blacktriangleright Reduce Termination to an existential formula over $\mathbb Z$ [SAS '20]
	- linear arithmetic: co-NP-complete

Does the loop terminate?

$$
\begin{array}{ll}\text{while } (x_1^2 < x_2 \land x_1 > 0) \text{ do} \\ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} 2 \cdot x_1 \\ 3 \cdot x_2 \end{bmatrix} \\ \text{end} \end{array}
$$

- \blacktriangleright Yes!
- ▶ Value of $\frac{x_1^2}{x_1}$ eventually *outgrows* value of x_2
- ▶ At some point we always have

 $4^{i} \cdot e_1^2 \geq 3^{i} \cdot e_2.$

- \blacktriangleright Reduce Termination to an existential formula over $\mathbb Z$ [SAS '20]
	- linear arithmetic: co-NP-complete
	- \cdot non-linear arithmetic: non-termination is semi-decidable

Overview

Goal: Infer (upper) runtime bounds for "real-world" programs

$$
\begin{array}{ll}\text{while } (x_1^2 < x_2 \land x_1 > 0) \text{ do} \\ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} 2 \cdot x_1 \\ 3 \cdot x_2 \end{bmatrix} \\ \text{end} \end{array}
$$

Closed forms w.r.t. initial values e_1 and e_2 :

► Value of
$$
x_1^2
$$
: $(2^i \cdot e_1)^2 = 4^i \cdot e_1^2$ \n► Value of x_2 : $3^i \cdot e_2$

Goal: Infer (upper) runtime bounds for "real-world" programs

$$
\begin{array}{l} \text { while } \left(x_1^2 < x_2 \wedge x_1 > 0 \right) \text { do } \\ \left[\begin{matrix} x_1 \\ x_2 \end{matrix}\right] \leftarrow \left[\begin{matrix} 2 \cdot x_1 \\ 3 \cdot x_2 \end{matrix}\right] \\ \text { end } \end{array}
$$

Closed forms w.r.t. initial values e_1 and e_2 :

► Value of
$$
x_1^2
$$
: $(2^i \cdot e_1)^2 = 4^i \cdot e_1^2$ \n► Value of x_2 : $3^i \cdot e_2$

 \blacktriangleright Insert closed forms into guard $x_1^2 < x_2$:

Goal: Infer (upper) runtime bounds for "real-world" programs

$$
\begin{array}{l} \text { while } \left(x_1^2 < x_2 \wedge x_1 > 0 \right) \text { do } \\ \left[\begin{matrix} x_1 \\ x_2 \end{matrix}\right] \leftarrow \left[\begin{matrix} 2 \cdot x_1 \\ 3 \cdot x_2 \end{matrix}\right] \\ \text { end } \end{array}
$$

Closed forms w.r.t. initial values e_1 and e_2 :

► Value of
$$
x_1^2
$$
: $(2^i \cdot e_1)^2 = 4^i \cdot e_1^2$ \n► Value of x_2 : $3^i \cdot e_2$

 \blacktriangleright Insert closed forms into guard $x_1^2 < x_2$:

 $4^{i} \cdot e_1^2 < 3^{i} \cdot e_2$

Goal: Infer (upper) runtime bounds for "real-world" programs

$$
\begin{array}{l} \text { while } \left(x_1^2 < x_2 \wedge x_1 > 0 \right) \text { do } \\ \left[\begin{matrix} x_1 \\ x_2 \end{matrix}\right] \leftarrow \left[\begin{matrix} 2 \cdot x_1 \\ 3 \cdot x_2 \end{matrix}\right] \\ \text { end } \end{array}
$$

Closed forms w.r.t. initial values e_1 and e_2 :

► Value of
$$
x_1^2
$$
: $(2^i \cdot e_1)^2 = 4^i \cdot e_1^2$ \n► Value of x_2 : $3^i \cdot e_2$

 \blacktriangleright Insert closed forms into guard $x_1^2 < x_2$:

Goal: Infer (upper) runtime bounds for "real-world" programs

$$
\begin{array}{l} \text { while } \left(x_1^2 < x_2 \wedge x_1 > 0 \right) \text { do } \\ \left[\begin{matrix} x_1 \\ x_2 \end{matrix}\right] \leftarrow \left[\begin{matrix} 2 \cdot x_1 \\ 3 \cdot x_2 \end{matrix}\right] \\ \text { end } \end{array}
$$

Closed forms w.r.t. initial values e_1 and e_2 :

► Value of
$$
x_1^2
$$
: $(2^i \cdot e_1)^2 = 4^i \cdot e_1^2$ \n► Value of x_2 : $3^i \cdot e_2$

 \blacktriangleright Insert closed forms into guard $x_1^2 < x_2$:

 $4^i \cdot e_1^2 - 3^i \cdot e_2 < 0$

▶ When does the sign of $4^{i} \cdot e_1^2 - 3^{i} \cdot e_2$ only depend on e_1^2 ?

Goal: Infer (upper) runtime bounds for "real-world" programs

$$
\begin{array}{l} \text { while } \left(x_1^2 < x_2 \wedge x_1 > 0 \right) \text { do } \\ \left[\begin{matrix} x_1 \\ x_2 \end{matrix}\right] \leftarrow \left[\begin{matrix} 2 \cdot x_1 \\ 3 \cdot x_2 \end{matrix}\right] \\ \text { end } \end{array}
$$

Closed forms w.r.t. initial values e_1 and e_2 :

► Value of
$$
x_1^2
$$
: $(2^i \cdot e_1)^2 = 4^i \cdot e_1^2$ \n► Value of x_2 : $3^i \cdot e_2$

 \blacktriangleright Insert closed forms into guard $x_1^2 < x_2$:

- ▶ When does the sign of $4^{i} \cdot e_1^2 3^{i} \cdot e_2$ only depend on e_1^2 ?
- ▶ When do we have $4^i > -3^i \cdot e_2$?

Goal: Infer (upper) runtime bounds for "real-world" programs

$$
\begin{array}{l} \text { while } \left(x_1^2 < x_2 \wedge x_1 > 0 \right) \text { do } \\ \left[\begin{matrix} x_1 \\ x_2 \end{matrix}\right] \leftarrow \left[\begin{matrix} 2 \cdot x_1 \\ 3 \cdot x_2 \end{matrix}\right] \\ \text { end } \end{array}
$$

Closed forms w.r.t. initial values e_1 and e_2 :

► Value of
$$
x_1^2
$$
: $(2^i \cdot e_1)^2 = 4^i \cdot e_1^2$ \n► Value of x_2 : $3^i \cdot e_2$

 \blacktriangleright Insert closed forms into guard $x_1^2 < x_2$:

- ▶ When does the sign of $4^{i} \cdot e_1^2 3^{i} \cdot e_2$ only depend on e_1^2 ?
- ▶ When do we have $4^i > -3^i \cdot e_2$?
- ▶ At this point, the loop terminates or never will.

Goal: Infer (upper) runtime bounds for "real-world" programs

$$
\begin{array}{l} \text { while } \left(x_1^2 < x_2 \wedge x_1 > 0 \right) \text { do } \\ \left[\begin{matrix} x_1 \\ x_2 \end{matrix}\right] \leftarrow \left[\begin{matrix} 2 \cdot x_1 \\ 3 \cdot x_2 \end{matrix}\right] \\ \text { end } \end{array}
$$

Closed forms w.r.t. initial values e_1 and e_2 :

► Value of
$$
x_1^2
$$
: $(2^i \cdot e_1)^2 = 4^i \cdot e_1^2$ \n▶ Value of x_2 : $3^i \cdot e_2$

 \blacktriangleright Insert closed forms into guard $x_1^2 < x_2$:

- ▶ When does the sign of $4^{i} \cdot e_1^2 3^{i} \cdot e_2$ only depend on e_1^2 ?
- ▶ When do we have $4^i > -3^i \cdot e_2$?
- ▶ At this point, the loop terminates or never will.
- ▶ Bound on stabilization threshold can be computed *automatically*

Goal: Infer (upper) runtime bounds for "real-world" programs

$$
\begin{array}{l} \text { while } \left(x_1^2 < x_2 \wedge x_1 > 0 \right) \text { do } \\ \left[\begin{matrix} x_1 \\ x_2 \end{matrix}\right] \leftarrow \left[\begin{matrix} 2 \cdot x_1 \\ 3 \cdot x_2 \end{matrix}\right] \\ \text { end } \end{array}
$$

Closed forms w.r.t. initial values e_1 and e_2 :

► Value of
$$
x_1^2
$$
: $(2^i \cdot e_1)^2 = 4^i \cdot e_1^2$ \n► Value of x_2 : $3^i \cdot e_2$

 \blacktriangleright Insert closed forms into guard $x_1^2 < x_2$:

- ▶ When does the sign of $4^{i} \cdot e_1^2 3^{i} \cdot e_2$ only depend on e_1^2 ?
- ▶ When do we have $4^i > -3^i \cdot e_2$?
- ▶ At this point, the loop terminates or never will.
- ▶ Bound on stabilization threshold can be computed *automatically*
- ▶ Improve [LPAR '20] by considering variables individually

Goal: Infer (upper) runtime bounds for "real-world" programs

$$
\begin{array}{l} \text { while } \left(x_1^2 < x_2 \wedge x_1 > 0 \right) \text { do } \\ \left[\begin{matrix} x_1 \\ x_2 \end{matrix}\right] \leftarrow \left[\begin{matrix} 2 \cdot x_1 \\ 3 \cdot x_2 \end{matrix}\right] \\ \text { end } \end{array}
$$

▶ Bound the point where the truth value of the guard stabilizes.

▶ When do we have $4^i > -3^i \cdot e_2$?

Goal: Infer (upper) runtime bounds for "real-world" programs

$$
\begin{array}{l} \text { while } \left(x_1^2 < x_2 \wedge x_1 > 0 \right) \text { do } \\ \left[\begin{matrix} x_1 \\ x_2 \end{matrix}\right] \leftarrow \left[\begin{matrix} 2 \cdot x_1 \\ 3 \cdot x_2 \end{matrix}\right] \\ \text { end } \end{array}
$$

▶ Bound the point where the truth value of the guard stabilizes.

Goal: Infer (upper) runtime bounds for "real-world" programs

$$
\begin{array}{l} \text { while } \left(x_1^2 < x_2 \wedge x_1 > 0 \right) \text { do } \\ \left[\begin{matrix} x_1 \\ x_2 \end{matrix}\right] \leftarrow \left[\begin{matrix} 2 \cdot x_1 \\ 3 \cdot x_2 \end{matrix}\right] \\ \text { end } \end{array}
$$

▶ Bound the point where the truth value of the guard stabilizes.

 $4^{i} > -3^{i} \cdot e_{2}$

Goal: Infer (upper) runtime bounds for "real-world" programs

$$
\begin{array}{l} \text { while } \left(x_1^2 < x_2 \wedge x_1 > 0 \right) \text { do } \\ \left[\begin{matrix} x_1 \\ x_2 \end{matrix}\right] \leftarrow \left[\begin{matrix} 2 \cdot x_1 \\ 3 \cdot x_2 \end{matrix}\right] \\ \text { end } \end{array}
$$

▶ Bound the point where the truth value of the guard stabilizes.

Goal: Infer (upper) runtime bounds for "real-world" programs

$$
\begin{array}{l} \text { while } \left(x_1^2 < x_2 \wedge x_1 > 0 \right) \text { do } \\ \left[\begin{matrix} x_1 \\ x_2 \end{matrix}\right] \leftarrow \left[\begin{matrix} 2 \cdot x_1 \\ 3 \cdot x_2 \end{matrix}\right] \\ \text { end } \end{array}
$$

Goal: Infer (upper) runtime bounds for "real-world" programs

$$
\begin{array}{l} \text { while } \left(x_1^2 < x_2 \wedge x_1 > 0 \right) \text { do } \\ \left[x_1\atop x_2\right] \leftarrow \left[2 \cdot x_1\atop 3 \cdot x_2\right] \\ \text { end } \end{array}
$$

▶ When do we have $4^i > -3^i \cdot e_2$? ▶ Prove: $i > |e_2|$ implies $4^i > -3^i \cdot e_2$

▶ Bound the point where the truth

value of the guard stabilizes.

Goal: Infer (upper) runtime bounds for "real-world" programs

$$
\begin{array}{l} \text { while } \left(x_1^2 < x_2 \wedge x_1 > 0 \right) \text { do } \\ \left[x_1\atop x_2\right] \leftarrow \left[2 \cdot x_1\atop 3 \cdot x_2\right] \\ \text { end } \end{array}
$$

▶ Bound the point where the truth value of the guard stabilizes.

▶ When do we have $4^i > -3^i \cdot e_2$? ▶ Prove: $i > |e_2|$ implies $4^i > -3^i \cdot e_2$ \blacktriangleright By Termination: $|e_2| + 1$ is runtime bound

Goal: Infer (upper) runtime bounds for "real-world" programs

$$
\begin{array}{l} \text { while } \left(x_1^2 < x_2 \wedge x_1 > 0 \right) \text { do } \\ \left[\begin{matrix} x_1 \\ x_2 \end{matrix}\right] \leftarrow \left[\begin{matrix} 2 \cdot x_1 \\ 3 \cdot x_2 \end{matrix}\right] \\ \text { end } \end{array}
$$

▶ Bound the point where the truth value of the guard stabilizes.

- ▶ When do we have $4^i > -3^i \cdot e_2$?
- ▶ Prove: $i > |e_2|$ implies $4^i > -3^i \cdot e_2$
- \blacktriangleright By Termination: $|e_2| + 1$ is runtime bound
- ▶ Procedure is complete and implemented in *KoAT*

 $4^{i} > -3^{i} \cdot e_{2}$ $(4/3)^i > -e_2$ $(4/3)^i > |e_2|$ $i > log(|e_2|)$

Overview

Goal: Infer (upper) runtime bounds for "real-world" programs

$$
\begin{array}{c} \text{while } (x_1^2 < x_2) \text{ do} \\ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} 2 \cdot x_1 \\ 3 \cdot x_2 \end{bmatrix} \end{array}
$$

end

$$
\begin{array}{l} \text{while } (x_3 > 0) \text{ do} \\ \\ \text{while } (x_1^2 < x_2) \text{ do} \\ \\ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} 2 \cdot x_1 \\ 3 \cdot x_2 \end{bmatrix} \\ \\ \text{end} \end{array}
$$

$$
\begin{aligned}\n\text{while } (x_3 > 0) \text{ do} \\
\text{while } (x_1^2 < x_2) \text{ do} \\
\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} < \begin{bmatrix} 2 \cdot x_1 \\ 3 \cdot x_2 \end{bmatrix} \\
\text{end} \\
\begin{bmatrix} x_3 \end{bmatrix} < \begin{bmatrix} x_3 - 1 \end{bmatrix}\n\end{aligned}
$$

$$
\begin{array}{l} \text{while } (x_3 > 0) \text{ do} \\ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} x_4 \\ x_2^2 \end{bmatrix} \\ \text{while } (x_1^2 < x_2) \text{ do} \\ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} 2 \cdot x_1 \\ 3 \cdot x_2 \end{bmatrix} \\ \text{end} \\ \begin{bmatrix} x_3 \end{bmatrix} \leftarrow \begin{bmatrix} x_3 - 1 \end{bmatrix} \\ \text{end} \end{array}
$$

$$
\begin{array}{l} \text { while } \left(x_3 > 0 \right) \text { do } \\ \left[\begin{matrix} x_1 \\ x_2 \end{matrix} \right] \leftarrow \left[\begin{matrix} x_4 \\ x_2^2 \end{matrix} \right] \\ \text { while } \left(x_1^2 < x_2 \right) \text { do } \\ \left[\begin{matrix} x_1 \\ x_2 \end{matrix} \right] \leftarrow \left[\begin{matrix} 2 \cdot x_1 \\ 3 \cdot x_2 \end{matrix} \right] \\ \text { end } \\ \left[\begin{matrix} x_3 \end{matrix} \right] \leftarrow \left[\begin{matrix} x_3 - 1 \end{matrix} \right] \\ \text { end } \end{array}
$$
Goal: Infer (upper) runtime bounds for "real-world" programs

$$
\begin{array}{l} \text { while } \left(x_3>0\right) \text { do } \\ \left[x_1\atop{x_2}\right] \leftarrow \left[\begin{matrix} x_4 \\ x_2^2 \end{matrix}\right] \\ \text { while } \left(x_1^2 < x_2\right) \text { do } \\ \left[\begin{matrix} x_1 \\ x_2 \end{matrix}\right] \leftarrow \left[\begin{matrix} 2 \cdot x_1 \\ 3 \cdot x_2 \end{matrix}\right] \\ \text { end } \\ \left[\begin{matrix} x_3 \end{matrix}\right] \leftarrow \left[\begin{matrix} x_3-1 \end{matrix}\right] \\ \text { end } \end{array}
$$

▶ How often do we execute the inner loop?

Goal: Infer (upper) runtime bounds for "real-world" programs

$$
\begin{array}{l} \text{while } (x_3 > 0) \text{ do} \\ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} x_4 \\ x_2^2 \end{bmatrix} \\ \text{while } (x_1^2 < x_2) \text{ do} \\ \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \leftarrow \begin{bmatrix} 2 \cdot x_1 \\ 3 \cdot x_2 \end{bmatrix} \\ \text{end} \\ \begin{bmatrix} x_3 \end{bmatrix} \leftarrow \begin{bmatrix} x_3 - 1 \end{bmatrix} \\ \text{end} \end{array}
$$

- ▶ How often do we execute the inner loop?
- ▶ Idea: Analyze different subprograms and combine results

Goal: Infer (upper) runtime bounds for "real-world" programs

$$
\begin{aligned}\n\text{while } (x_3 > 0) \text{ do} \\
\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} < \begin{bmatrix} x_4 \\ x_2^2 \end{bmatrix} \\
\text{costs: } |e_2| + 1 \\
\begin{bmatrix} x_3 \end{bmatrix} < \begin{bmatrix} x_3 - 1 \end{bmatrix} \\
\text{end}\n\end{aligned}
$$

- ▶ How often do we execute the inner loop?
- ▶ Idea: Analyze different subprograms and combine results

Inner loop executions: $(|e_2|+1)$

Goal: Infer (upper) runtime bounds for "real-world" programs

while $(x_3 > 0)$ do $\sqrt{x_1}$ \mathbf{x}_2] *←* $\sqrt{X_4}$ x_5^2 5] $\csc |e_2| + 1$ $\left[$ x₃ $\right]$ *←* $\left[x_3-1\right]$ end

- ▶ How often do we execute the inner loop?
- ▶ Idea: Analyze different subprograms and combine results
- ▶ Respect size of variables:

Inner loop executions: $(|e_2|+1)$

Goal: Infer (upper) runtime bounds for "real-world" programs

while $(x_3 > 0)$ do costs: $|e_5^2$ $|\frac{2}{5}|+1$ $\left[$ x₃ $\right]$ *←* $\left[x_3-1\right]$ end

- ▶ How often do we execute the inner loop?
- ▶ Idea: Analyze different subprograms and combine results
- \blacktriangleright Respect size of variables:
	- \bullet Size of x_2 is bounded by e_5^2 before inner loop

Inner loop executions: $(|e_5|^2 + 1)$

13 of 16 IJCAR 2022 **Nils Lommen**, Eleanore Meyer, and Jürgen Giesl RWTH Aachen University – LuFGi2

Goal: Infer (upper) runtime bounds for "real-world" programs

while $(x_3 > 0)$ do costs: $|e_5^2$ $\frac{2}{5}$ | + 1 $\left[x_{3}\right]$ *←* $\left[x_{3}-1\right]$ end

- ▶ How often do we execute the inner loop?
- ▶ Idea: Analyze different subprograms and combine results
- ▶ Respect size of variables:
	- \bullet Size of x_2 is bounded by e_5^2 before inner loop
- \blacktriangleright Use ranking functions (M Φ RFs) to analyze outer loop

Inner loop executions: $|e_3| \cdot (|e_5|^2 + 1)$

Goal: Infer (upper) runtime bounds for "real-world" programs

```
while (x_3 > 0) do
    costs: |e_5^2\frac{2}{5}| + 1
    \left[x<sub>3</sub>\right]←
                   \left[x_3-1\right]end
```
- ▶ How often do we execute the inner loop?
- ▶ Idea: Analyze different subprograms and combine results
- ▶ Respect size of variables:
	- \bullet Size of x_2 is bounded by e_5^2 before inner loop
- \blacktriangleright Use ranking functions (M Φ RFs) to analyze outer loop

Inner loop executions: $|e_3| \cdot (|e_5|^2 + 1) \in \mathcal{O}(n^3)$

Overview

Overview

Overview

▶ C_Complexity consisting of 504 (mainly linear) benchmarks from TPDB

▶ C_Complexity consisting of 504 (mainly linear) benchmarks from TPDB

$\mathcal{O}(1)$ $\mathcal{O}(n)$ $\mathcal{O}(n^2)$ $\mathcal{O}(n^{>2})$) *< ∞* AVG(s)

▶ C_Complexity consisting of 504 (mainly linear) benchmarks from TPDB

$\mathcal{O}(1)$ $\mathcal{O}(n)$ $\mathcal{O}(n^2)$ $\mathcal{O}(n^{>2})$ \parallel **AVIC()**

▶ C_Complexity consisting of 504 (mainly linear) benchmarks from TPDB

$O(1)$ $O(n)$ $O(n^2)$ $O(n^{22})$ < ∞ AVG(s)

▶ C_Complexity consisting of 504 (mainly linear) benchmarks from TPDB

$\mathcal{O}(1)$ $\mathcal{O}(n)$ $\mathcal{O}(n^2)$ $\mathcal{O}(n^{>2})$) *< ∞* AVG(s)

▶ At most 386 benchmarks might terminate

▶ C Complexity consisting of 504 (mainly linear) benchmarks from TPDB

▶ At most 386 benchmarks might terminate

 \triangleright KoAT2 + TWN + M Φ RF solves 89% of benchmarks which might terminate

▶ C[on](https://aprove-developers.github.io/KoAT_TWN/)clusion

- ▶ C[on](https://aprove-developers.github.io/KoAT_TWN/)clusion
	- Introduced modular approach for complexity analysis combining

- ▶ C[on](https://aprove-developers.github.io/KoAT_TWN/)clusion
	- Introduced modular approach for complexity analysis combining
		- Procedure to handle twn-loops

- ▶ C[on](https://aprove-developers.github.io/KoAT_TWN/)clusion
	- Introduced modular approach for complexity analysis combining
		- Procedure to handle twn-loops $-$ M Φ RFs

- ▶ C[on](https://aprove-developers.github.io/KoAT_TWN/)clusion
	- Introduced modular approach for complexity analysis combining
		- Procedure to handle twn-loops $-$ M Φ RFs
- - Handle loops with non-linear arithmetic

- ▶ C[on](https://aprove-developers.github.io/KoAT_TWN/)clusion
	- Introduced modular approach for complexity analysis combining
		- Procedure to handle twn-loops $-$ M Φ RFs

- Handle loops with non-linear arithmetic
- Complete for all twn-loops with linear arithmetic

- ▶ C[on](https://aprove-developers.github.io/KoAT_TWN/)clusion
	- Introduced modular approach for complexity analysis combining
		- Procedure to handle twn-loops $-$ M Φ RFs

- Handle loops with non-linear arithmetic
- Complete for all twn-loops with linear arithmetic
- KoAT2 outperforms other state-of-the-art tools

- ▶ C[on](https://aprove-developers.github.io/KoAT_TWN/)clusion
	- Introduced modular approach for complexity analysis combining
		- Procedure to handle twn-loops $-$ M Φ RFs

- Handle loops with non-linear arithmetic
- Complete for all twn-loops with linear arithmetic
- KoAT2 outperforms other state-of-the-art tools
- ▶ Future work

- ▶ C[on](https://aprove-developers.github.io/KoAT_TWN/)clusion
	- Introduced modular approach for complexity analysis combining

– Procedure to handle twn-loops $-$ M Φ RFs

- Handle loops with non-linear arithmetic
- Complete for all twn-loops with linear arithmetic
- KoAT2 outperforms other state-of-the-art tools
- ▶ Future work
	- Extend class of loops by transformations

- ▶ C[on](https://aprove-developers.github.io/KoAT_TWN/)clusion
	- Introduced modular approach for complexity analysis combining
		- Procedure to handle twn-loops $-$ M Φ RFs
	- Handle loops with non-linear arithmetic
	- Complete for all twn-loops with linear arithmetic
	- KoAT2 outperforms other state-of-the-art tools
- ▶ Future work
	- Extend class of loops by transformations

https://aprove-developers.github.io/KoAT_TWN/

- ▶ C[on](https://aprove-developers.github.io/KoAT_TWN/)clusion
	- Introduced modular approach for complexity analysis combining

– Procedure to handle twn-loops $-$ M Φ RFs

- Handle loops with non-linear arithmetic
- Complete for all twn-loops with linear arithmetic
- KoAT2 outperforms other state-of-the-art tools
- ▶ Future work
	- Extend class of loops by transformations

https://aprove-developers.github.io/KoAT_TWN/

- ▶ C[on](https://aprove-developers.github.io/KoAT_TWN/)clusion
	- Introduced modular approach for complexity analysis combining
		- Procedure to handle twn-loops $-$ M Φ RFs

- Handle loops with non-linear arithmetic
- Complete for all twn-loops with linear arithmetic
- KoAT2 outperforms other state-of-the-art tools
- ▶ Future work
	- Extend class of loops by transformations

https://aprove-developers.github.io/KoAT_TWN/

Thank You!

Analysis of Integer Programs