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Motivation

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x21 < x2 ∧ x1 > 0) dox1x2
x3

←
2 · x1 + x23

3 · x2
x3


end

▶ Does this loop terminate?
▶ How often do we execute the
loop?

• Linear ranking functions fail.
• Existing tools usually fail with
nonlinear arithmetic

• Can compute nonlinear runtime
bounds for twnloops.

▶ Combine [TOPLAS ’16] and [SAS ’20; LPAR ’20] in automatic complexity
analysis tool KoAT

▶ Approach is complete for all terminating twnloops
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TWNLoops

while (τ) dox1
. . .
xd

←
c1 · x1 + p1

. . .
cd · xd + pd


end

▶ τ built from ∧, ∨, (¬, …) and
polynomial inequations over Z

▶ c1, . . . , cd ∈ Z
▶ pi ∈ Z[xi+1, . . . , xd] nonlinear

▶ Variable value depends at most linearly on its previous value.

• Prevent superexponential growth: x← x2 (so the value is 2(2
i) · e)

▶ Polynomial dependencies only of variables with higher index

• No cyclic dependencies: x1 ← x2 and x2 ← x1
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Closed Forms & Simplification

Goal: Infer closed forms

and remove nonlinear parts to reduce degree

while (x21 < x2 ∧ x1 > 0) dox1x2
x3

←
2 · x1 + x23

3 · x2
x3


end

▶ Value of always nonnegative

• Removing x23 increases runtime

▶ Eliminated nonlinear occurrence of x3
in closed forms

▶ Novel approach infers tighter bounds
than [LPAR ’20]

▶ Closed forms after i iterations w.r.t. initial values e1, e2 and e3 :

•
• Value of x2: 3i · e2

▶ KoAT automatically infers closed forms [CAV ’19] and applies simplification
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Termination of TWNLoops

Does the loop terminate?

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

▶ Yes!

▶ Value of x21 eventually outgrows
value of x2

▶ At some point we always have

4i · e21 ≥ 3i · e2.

▶ Reduce Termination to an existential formula over Z [SAS ’20]

• linear arithmetic: co-NPcomplete
• nonlinear arithmetic: nontermination is semidecidable
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Runtime Complexity of TWNLoops

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

Closed forms w.r.t. initial values e1 and e2:

▶ Value of x21: (2i · e1)2 = 4i · e21
▶ Value of x2: 3i · e2

▶ Insert closed forms into guard x21 < x2:

▶ When does the sign of 4i · e21 − 3i · e2 only depend on e21 ?
▶ When do we have 4i > −3i · e2 ?
▶ At this point, the loop terminates or never will.
▶ Bound on stabilization threshold can be computed automatically
▶ Improve [LPAR ’20] by considering variables individually
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Runtime Complexity of TWNLoops

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x21 < x2 ∧ x1 > 0) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

▶ Bound the point where the truth
value of the guard stabilizes.

▶ When do we have 4i > −3i · e2?

▶ Prove: i > |e2| implies 4i > −3i · e2
▶ By Termination: |e2| + 1 is runtime bound
▶ Procedure is complete and implemented in

KoAT
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Runtime Complexity of Integer Programs

Goal: Infer (upper) runtime bounds for “realworld“ programs

while (x3 > 0) do[
x1
x2

]
←

[
x4
x25

]

while (x21 < x2) do[
x1
x2

]
←

[
2 · x1
3 · x2

]
end

[
x3
]
←

[
x3 − 1

]
end

▶ How often do we execute the inner loop?
▶ Idea: Analyze different subprograms and
combine results

▶ Respect size of variables:

• Size of x2 is bounded by e25 before inner loop

▶ Use ranking functions (MΦRFs) to analyze
outer loop
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Goal: Infer (upper) runtime bounds for “realworld“ programs
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x1
x2

]
←
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costs: |e2| + 1[
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←
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]
←

[
x3 − 1

]
end

▶ How often do we execute the inner loop?
▶ Idea: Analyze different subprograms and
combine results

▶ Respect size of variables:

• Size of x2 is bounded by e25 before inner loop
▶ Use ranking functions (MΦRFs) to analyze
outer loop

Inner loop executions:

|e3| ·

(|e2| + 1)
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▶ Use ranking functions (MΦRFs) to analyze
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Overview

Analyze Program

Sizes
[TOPLAS ’16]

Analyze

Subprogram

TWN

MΦRF
[BenAmram, Genaim 2017; SRH60]

Closed Forms

Simplification

Termination

Stabilization Threshold

Local Runtime Bound
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Evaluation of our Implementation in KoAT2

▶ C_Complexity consisting of 504 (mainly linear) benchmarks from TPDB
O(1) O(n) O(n2) O(n>2) <∞ AVG(s)

KoAT2 + TWN 20 111 3 2 136 2.54

Loopus 17 170 49 5 241 0.42
KoAT1 25 169 74 12 286 1.77
CoFloCo 22 196 66 5 289 0.62
MaxCore 23 216 66 7 312 2.02
KoAT2 + MΦRF 24 226 68 10 328 8.23
KoAT2 + TWN + MΦRF 26 231 73 13 344 8.72

succ. rate
35%
62%
74%
75%
80%
85%
89%

▶ At most 386 benchmarks might terminate
▶ KoAT2 + TWN + MΦRF solves 89% of benchmarks which might terminate
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Conclusion & Future Work

▶ Conclusion

• Introduced modular approach for complexity analysis combining

– Procedure to handle twnloops – MΦRFs

• Handle loops with nonlinear arithmetic
• Complete for all twnloops with linear arithmetic
• KoAT2 outperforms other stateoftheart tools

▶ Future work

• Extend class of loops by transformations

https://aprove-developers.github.io/KoAT_TWN/

Thank You!
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